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Abstract. Suppose (X,σ) is a subshift, PX(n) is the word complexity func-

tion of X, and Aut(X) is the group of automorphisms of X. We show that
if PX(n) = o(n2/ log2 n), then Aut(X) is amenable (as a countable, discrete

group). We further show that if PX(n) = o(n2), then Aut(X) can never
contain a nonabelian free semigroup (and, in particular, can never contain a

nonabelian free subgroup). This is in contrast to recent examples, due to Salo

and Schraudner, of subshifts with quadratic complexity that do contain such
a semigroup.

1. Amenability and the automorphism group

For a subshift (X,σ) over a finite alphabet, let Aut(X) = Aut(X,σ) denote
the group of all automorphisms of the system, meaning the collection of all home-
omorphisms φ : X → X such that φ ◦ σ = σ ◦ φ. The automorphism group of
many subshifts with positive entropy, including the full shift and more generally
any mixing shift of finite type, is a countable group that contains many structures,
including isomorphic copies of any finite group, countably many copies of Z, and the
free group on countably many generators (see [7, 1]). In particular, when given the
discrete topology, these automorphism groups are never amenable. This behavior
is in contrast to what happens in minimal shifts of zero entropy: if the complexity
function PX(n), which counts the number of words in the language of the shift, sat-

isfies lim supn→∞
log(PX(n))

nβ
= 0 for some β < 1/2, then the automorphism group

Aut(X) is amenable; furthermore, every finitely generated torsion-free subgroup of
the automorphism group has subexponential growth [4]. For lower complexities,
one can sometimes carry out a more detailed analysis of the automorphism group,
and this is done for polynomial growth in [4], and with extra assumptions on the
dynamics, sometimes one can give a complete description of the automorphism
group (see [2, 3, 5]).

We continue the systematic study of automorphism groups here, focusing on
subshifts with zero entropy. These automorphism groups are constrained by the
subexponential growth rate of words in the language of the shift, and it seems
plausible that for any subshift (X,σ) of zero entropy, we have a version of the Tits
alternative: either Aut(X) contains a free subgroup or Aut(X) is amenable. It may
be possible that a stronger alternative holds, namely either Aut(X) contains a free
subgroup or it is virtually abelian. Somewhat surprisingly, we can not rule out that
such an alternative holds for any shift, even without an assumption on the entropy.
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For example, this dichotomy holds for any mixing subshift of finite type [1], since
the automorphism group contains the free group on two generators, and it holds
for other classes of subshifts with positive entropy, such as Toeplitz systems, where
the automorphism group is abelian [6].

Furthermore, a stronger result is plausible, namely that for any zero entropy
subshift, the automorphism group is amenable. Numerous results support this
statement: the automorphism group is amenable for any minimal subshift whose
complexity is stretched exponential with exponent less than 1/2, for all subshifts
with linear complexity, and for several other classes of low complexity shifts (see [2,
3, 4, 5]).

To address these questions and conjectures, we give a detailed analysis of the
algebraic properties of Aut(X) for shifts whose complexity is at most quadratic.
In [2], we showed that for a transitive shift with subquadratic growth, after quoti-
enting the automorphism group by the subgroup generated by the shift, we are left
with a periodic group. This left open a stronger description of this automorphism
group, as well as what happens without an assumption of transitivity. As a first
step in addressing this, we show (see Section 2 for precise definitions):

Theorem 1. Assume that (X,σ) is a subshift whose complexity function satisfies
PX(n) = o(n2/ log2 n). Then Aut(X) is amenable (as a countable discrete group).

In particular, the automorphism group of any shift whose complexity is o(n2−ε),
for some ε > 0, is amenable.

The techniques to prove Theorem 1 follow a basic strategy developed in [4], but
deducing the theorem without the assumption that X is minimal adds significant
technical difficulties. One of the new ideas used is the construction of a descending
chain of subshifts for which each term retains some of the properties that make
minimal shifts easier to study. We believe that this technique should prove to be
applicable in other settings.

Unfortunately, our methods do not easily extend to a shift whose complexity is
o(n2), but in this setting we are able to prove a weaker result that holds for this
larger class of shifts:

Theorem 2. Assume that (X,σ) is a subshift whose complexity function satisfies

lim inf→∞
PX(n)
n2 = 0. Then Aut(X) does not contain an isomorphic copy of the

free semigroup on two generators.

In particular, such an automorphism group can not contain any nonabelian free
subgroup. The interest in this theorem is the constrast with a recent result of Salo
and Schraudner: they constructed a subshift (X,σ) whose complexity function sat-
isfies PX(n) = (n+ 1)2 and whose automorphism group contains a free semigroup
on two generators. This highlights the subtle issues that arise in addressing ques-
tions and conjectures on amenability of Aut(X) when (X,σ) is not minimal, and
the difficulty in passing beyond quadratic complexity.

2. Background

2.1. Subshifts. Let A be a finite alphabet and endow AZ with the topology in-
duced by the metric

d(x, y) := 2− inf{|i| : xi 6=yi}.
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For x ∈ AZ, we denote the ith coordinate of x by xi. For n ∈ N, an element
w = (w0, . . . , wn−1) ∈ An is called a word of length n. If w is a word of length n,
then the set

[w]+0 := {x ∈ AZ : xi = wi for all 0 ≤ i < n}
is the cylinder set determined by w. The collection of all cylinder sets is a basis
for the topology of AZ. The (left) shift σ : AZ → AZ is the map x 7→ σx given by
(σx)i := xi+1 for all i ∈ Z, and it is a homeomorphism of AZ. If x ∈ AZ and there
exists p > 0 such that σpx = x, then x is periodic of period p. If no such p exists,
x is aperiodic.

A closed, σ-invariant subset X ⊂ AZ together with the shift σ : X → X is called
a subshift. If X is a subshift, we define the language L(X) of X to be

L(X) :=

{
w ∈

∞⋃
n=1

An : [w]+0 ∩X 6= ∅

}
.

For n ∈ N, the set Ln(X) := L(X)∩An denotes the set of words of length n in the
language of X, and we denote the length of word w ∈ L(X) by |w|.

2.2. Complexity. The complexity function of X is the function PX : N → N de-
fined by PX(n) := |Ln(X)|. If x ∈ AZ, then the orbit closure O(x) of x under the
shift

O(x) := {σix : i ∈ Z}
is also a subshift. We make a slight abuse of notation and refer to PO(x)

(n) as

the complexity function of x. To avoid confusion, we use the lowercase letter x to
refer to an element of AZ and the uppercase letter X to refer to a subshift of AZ.
The basic result relating dynamical properties of x to its complexity is the Morse-
Hedlund Theorem [8]: an element x ∈ AZ is aperiodic if and only if its complexity
function is bounded below by n+ 1 for all n.

Suppose w = (w0, . . . , wn−1) ∈ Ln(X) and L ∈ N is fixed. We say that w
extends uniquely L times to the right and left (in the language of X) if there is
a unique u = (u0, . . . , un+2L−1) ∈ Ln+2L(X) such that wi = ui+L for 0 ≤ i < n.
If w ∈ L(X) and u ∈ Ln(X) for some n ≥ |w|, we say that w is a subword of u if
there exists 0 ≤ i < n − |w| such that uj = wj for i ≤ j < |w|. Thus if w extends
uniquely L times in X, then if x ∈ X and if w = (xj , . . . , xj+n−1) for some j ∈ Z,
then u = (xj−L, . . . , xj+n+L−1). Rephrasing this, whenever w is a word in x, then
u is also a word in x and w is a subword of u.

2.3. The automorphism group. If (X,σ) is a subshift and Hom(X) is the group
of all homeomorphisms from X to itself, then the group of automorphisms of X,
denoted Aut(X), is the centralizer of σ in Hom(X). (Strictly speaking, we should
write Aut(X,σ) instead of Aut(X), but we assume that the subshift is endowed
with the shift and omit explicit mention of σ from most of our notation.) A function
ϕ : X → X is called a sliding block code if there exists R ∈ N∪ {0} such that (ϕx)0
is a function of (x−R, . . . , xR) for all x ∈ X. In this case, R is called a range of ϕ.
The classical Curtis-Hedlund-Lyndon Theorem [7] states that every automorphism
of X is a sliding block code. In particular, this means that for any subshift (X,σ),
the automorphism group Aut(X) is countable.

For R ∈ N∪{0}, define AutR(X) to be the set of all φ ∈ Aut(X) such that both
φ and its inverse are given by sliding block codes of range R. Since any block code
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of range R is also a block code of range R+ 1, we have

Aut0(X) ⊂ Aut1(X) ⊂ Aut2(X) ⊂ Aut3(X) ⊂ · · ·

and Aut(X) =
⋃∞
R=0 AutR(X). If ϕ ∈ AutR(X) and if w ∈ L(X) is such that

|w| ≥ 2R + 1, then we define ϕ(w) to be the word of length |w| − 2R obtained
by applying the (range R) block code defining ϕ to w. Note that this definition is
not intrinsic to ϕ but rather to ϕ together with a range R. Whenever we apply an
automorphism ϕ ∈ AutR(X) to a word w, we are implicitly choosing R to be the
range of ϕ.

For each w ∈ L(X) and n ∈ N, define the functionWn : ([w]+0 ∩X)→ L|w|+2n(X)
by

Wn(x) := (x−n, x−n+1, . . . , x0, x1, . . . , x|w|+n−2, x|w|+n−1).

With this notation, w extends uniquely n times to the right and left (in the language
of X) if Wn(x) is independent of x ∈ [w]+0 ∩X.

Suppose u1, . . . , uk, v ∈ L(X). An automorphism φ ∈ Aut(X) preserves occur-
rences of v if φ([v]+0 ∩X) ⊂ [v]+0 ∩X. If D ∈ N, then φ preserves occurrences of v
when it is D units from u1, . . . , uk if for any x ∈ [v]+0 ∩X such that WD(x) does
not contain ui as a subword for any 1 ≤ i ≤ k, we have φ(x) ∈ [v]+0 ∩X.

To illustrate the usefulness of this notion, we note the following lemma:

Lemma 3. Let R ∈ N ∪ {0} be fixed and suppose ϕ,ψ ∈ AutR(X). Suppose
w ∈ L(X) extends uniquely 2R times to the right and left and let w̃ ∈ L(X) be the
unique word obtained by this extension. If ϕ(w̃) = ψ(w̃), then ϕ−1 ◦ ψ preserves
occurrences of w̃.

Proof. Since w extends uniquely 2R times to both sides (to w̃), it suffices to show
that ϕ−1 ◦ ψ preserves occurrences of w. Let x ∈ [w]+0 ∩ X. By assumption,
W2R(x) = w̃. Since ϕ and ψ are block codes of range R, WR(ϕx) = ϕ(w̃) =
ψ(w̃) =WR(ψx). Since ϕ−1 is a block code of range R and ϕ−1(ϕx) = x, we have
ϕ−1(WR(ϕx)) = w. Since ψx ∈ [WR(φx)]+0 ∩ X, it follows that (ϕ−1 ◦ ψ)(x) ∈
[w]+0 . �

Let (X,σ) be a subshift and suppose w ∈ L(X). Let X(w) ⊂ X denote the
(possibly empty) subshift of X obtained by forbidding the word w:

X(w) := X \ ([w]+0 ∩X) =
{
x ∈ X : σjx /∈ [w]+0 for all j ∈ Z

}
.

2.4. Amenability. If G is a group and F ⊂ G, let |F | denote the cardinality of the
set F , and for g ∈ G the set gF is defined to be the set {gf : f ∈ F}. A discrete,
countable group G is amenable if there exists a sequence (Fk)k∈N of finite subsets
of G such that every g ∈ G is contained in all but finitely many Fk and such that

lim
k→∞

|Fk∆gFk|
|Fk|

= 0

for all g ∈ G. In this case, the sequence (Fk)k∈N is called a Følner sequence for G.

3. Technical Lemmas

We start with a bound on the complexity for the subshift obtained by forbidding
the occurrences of some word:
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Lemma 4. Suppose (X,σ) is a subshift and w ∈ L(X). If the cylinder set [w]+0 ∩X
contains at least one aperiodic point, then for all n ≥ |w|, we have

PX(w)(n) ≤ PX(n)− (n− |w|+ 1).

Proof. Let x ∈ [w]+0 ∩X be aperiodic and let n ≥ |w| be fixed. There are two cases
to consider:
Case 1: Assume that every word of length n that occurs in x contains w as a
subword. By the Morse-Hedlund Theorem and aperiodicity of x, there are at least
n + 1 distinct words of length n that occur in x. Since none of these words are
in the language of X(w), we have PX(w)(n) ≤ PX(n) − (n + 1), which gives the
inequality in the statement.
Case 2: Assume there is a word of length n that occurs in x that does not contain
w as a subword. Without loss of generality, we can assume that x ∈ [w]+0 , and
that either (x1, . . . , xn) or (x|w|−n−1, . . . , x|w|−2) does not contain w as a subword
(otherwise we replace x with an appropriate shift of itself). First suppose that
(x1, . . . , xn) does not contain w as a subword and for each y ∈ X, let W(y) denote
the unique v ∈ Ln(X) such that y ∈ [v]+0 . Then our assumption is that w is
the left-most subword (of length |w|) in W(x) and w is not a subword of W(σx).
Therefore each of the words W(x), W(σ−1x), W(σ−2x), . . . , W(σ|w|−nx) contains
w as a subword, and the rightmost occurrence of w as a subword of W(σ−ix)
begins at the ith letter, for each 0 ≤ i < n − |w| + 1. It follows that these words
are all distinct and none of them are words in the language of X(w). Therefore
PX(w)(n) ≤ PX(n) − (n − |w| + 1) in this case. On the other hand, if w is not a
subword of (x|w|−n−1, . . . , x|w|−2), the argument is similar with the roles played by
left and right reversed. �

We use this to bound the maximal length of a descending chain of subshifts
obtained by forbidding a word at each step:

Lemma 5. Suppose (X,σ) is a subshift and L ∈ N is fixed. Let

X =: X0 ⊃ X1 ⊃ X2 ⊃ · · · ⊃ Xk

be a descending chain of nonempty subshifts, where for 0 ≤ i < k we have Xi+1 =
Xi(wi) for some word wi ∈ L(Xi) with |wi| ≤ L. Further suppose that for each
i = 0, 1, . . . , k − 1 the cylinder set [wi]

+
0 ∩Xi contains at least one aperiodic point.

Then
k < PX(2L− 1)/L.

Proof. By inductively applying Lemma 4 and using the fact that |wi| ≤ L for all i,
we have PXk(2L−1) ≤ PX(2L−1)−kL. If k ≥ PX(2L−1)/L, then PXk(2L−1) ≤ 0.
However, this is impossible, as nonempty subshift has at least one word of every
length. �

The proof of the following lemma is a straighforward modification of the proof
of Lemma 3.1 in [4]:

Lemma 6. Let d,N ∈ N and suppose (X,σ) is a subshift such that PX(n) ≤ nd

for all n ≥ N . Define kn to be

min{k ∈ N : no word w ∈ Ln(X) extends uniquely k times to the right and left}.
Then there exists C > 0 such that for all n ≥ N , there exists m ≤ n log n satisfying
km ≥ Cn. Moreover, C can be taken to be log(2)/4d.
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Proof. Suppose PX(n) ≤ nd for all n ≥ N . For contradiction, suppose that for all
C > 0 there exist arbitrarily large n such that km < Cn for all m ≤ n log n. Then
since every word of length n can be extended in at least two distinct ways to a word
of length n+ 2kn (by adding kn letters to each side), we have that

PX(n+ 2kn) ≥ 2PX(n).

Therefore the assumption that km < Cn for all m ≤ n log n implies that

PX(bn log nc) ≥ 2bn logn/Cnc = Ω(n(log 2)/C).

Fixing 0 < C ≤ (log 2)/4d, then for arbitrarily large n we have

PX(bn log nc) ≥ n(log 2)/2C ≥ n2d.
But this contradicts the fact that PX(bn log nc) ≤ (n log n)d < n2d for all sufficiently
large n. �

Suppose Y ⊆ X are two subshifts where Y is obtained by forbidding a finite
number of words from the language of X. If u ∈ L(Y ) and u extends uniquely T
times to the right and left (as a word in the language of Y ), it might not extend
uniquely T times to the right and left when thought of as a word in the language
of X. The following lemma resolves this issue, showing that if u appears in some
element of X and is sufficiently far from any occurrence of the forbidden words,
then u behaves as though it occurs in the language of Y :

Lemma 7. Let (X,σ) be a subshift and let w1, . . . , wk−1 ∈ L(X). Suppose

Y = {x ∈ X : σi(x) /∈ [wj ]
+
0 for any i ∈ Z and j ∈ {1, 2, . . . , k}}

and suppose u ∈ L(Y ) is a word which extends uniquely (in L(Y )) at least T many
times to the right and left. Let v ∈ L|u|+2T (Y ) be the unique word such that u is
obtained by removing the rightmost and leftmost T letters from v. Then there exists
D ∈ N such that for any x ∈ [u]+0 ∩ X, if σix /∈ [wj ]

+
0 for any −D ≤ i ≤ D and

1 ≤ j < k, then σ−Tx ∈ [v]+0 .

Proof. For contradiction, suppose not. For each D ∈ N, choose xD ∈ [u]+0 ∩X such
that σ−TxD /∈ [v]+0 and σixD /∈ [wj ]

+
0 for any −D ≤ i ≤ D and 1 ≤ j < k. Let

x ∈ X be a limit point of {xD : D ∈ N}. Then x ∈ [u]+0 and σix /∈ [wj ]
+
0 for any

i ∈ Z and 1 ≤ j < k. Thus x ∈ Y , and since u extends uniquely T times to the
right and left (as a subword of Y ) we have σ−Tx ∈ [v]+0 . This contradicts the fact
that σ−TxD /∈ [v]+0 for all D ∈ N and x is a limit point of {xD : D ∈ N}. �

We now generalize Lemma 3 to a form which is more useful in our setting.

Lemma 8. Let R ∈ N be fixed and suppose (X,σ) is a subshift. Let

X =: X0 ⊃ X1 ⊃ X2 ⊃ · · · ⊃ Xk

be a descending chain of nonempty subshifts, where for 0 ≤ i < k there exists
wi ∈ L(Xi) such that wi extends uniquely at least 2R times to the right and left (as a
word in L(Xi)), and Xi+1 = Xi(wi). Suppose further that there exists wk ∈ L(Xk)
that extends at least 2R times to the right and left but for which Xk(wk) = ∅.
Let w̃i ∈ L(Xi) be the unique word of length |wi| + 4R obtained by extending wi
by 2R letters on each side. If ϕ,ψ ∈ AutR(X) are such that ϕ(w̃i) = ψ(w̃i)
for all i = 0, 1, . . . , k, then there exists D such that for all i = 0, 1, 2, . . . , k the
automorphism (ϕ−1◦ψ) preserves all occurrences of w̃0 and preserves all occurrences
of w̃i that occur at least D units from w̃0, w̃1, . . . , w̃i−1.
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Proof. First we show that ϕ−1 ◦ψ preserves occurrences of w̃0. Let x ∈ [w̃0]+0 ∩X.
Since ψ(w̃0) = ϕ(w̃0), it follows that ψ(x) ∈ [ϕ(w̃0)]+0 ∩ X. Note that ϕ(w̃0) is
2R letters shorter than w̃0, since the block code defining ϕ has range R. Since
ϕ−1([ϕ(w̃0)]+0 ∩ X) ⊂ [w0]+0 ∩ X, we have that (ϕ−1 ◦ ψ)(x) ∈ [w0]+0 ∩ X. But
[w0]+0 ∩X = [w̃0]+0 ∩X since w0 extends uniquely 2R times to the right and left.
Since x ∈ [w̃0]+0 ∩ X was arbitrary, we have (ϕ−1 ◦ ψ)([w̃0]+0 ∩ X) ⊂ [w̃0]+0 ∩ X.
Therefore ϕ−1 ◦ψ preserves occurrences of w̃0. Clearly the roles of ϕ and ψ can be
interchanged, and so it also follows that ψ−1◦ϕ = (ϕ−1◦ψ)−1 preserves occurrences
of w̃0.

For the second statement, we proceed by induction. Assume that we have shown
that ϕ−1 ◦ ψ and ψ−1 ◦ ϕ preserve occurrences of w̃0 and there exists Dk such
that for all i < j, the automorphisms ϕ−1 ◦ ψ and ψ−1 ◦ ϕ preserve occurrences of
w̃i that occur at least Dk units from w̃0, w̃1, . . . , w̃i−1. We show that there exists
Dk+1 ≥ Dk such that ϕ−1 ◦ ψ and ψ−1 ◦ ϕ also preserve occurrences of w̃k that
occur at least Dk+1 units from w̃0, . . . , w̃k−1. By Lemma 7 applied to the subshifts

X and Y := Xk, there exists D̃k+1 ≥ Dk such that for any x ∈ [w̃k]+0 ∩ X, if

σix /∈ [w̃j ]
+
0 for any −D̃k+1 ≤ i ≤ D̃k+1 and 1 ≤ j < k, then σ−2Rx ∈ [w̃k]+0 .

Define Dk+1 := (k + 1) · D̃k+1 and let x ∈ [w̃k]+0 ∩X be such that σix /∈ [w̃j ]
+
0 for

any −Dk+1 ≤ i ≤ Dk+1 and 1 ≤ j < k. Define

P0 := {p ∈ Z : σpx ∈ [w̃0]+0 }.
Since ϕ−1 ◦ψ and ψ−1 ◦ϕ both preserve occurrences of w̃0, observe that P0 is equal
to the set {p ∈ Z : σp(ϕ−1 ◦ ψ)x ∈ [w̃0]+0 } (in other words, occurrences of w̃0 can
neither be created nor destroyed by applying ϕ−1 ◦ ψ to x). Next define

P1 := {p ∈ Z : σpx ∈ [w̃1]+0 }.
Since ϕ−1 ◦ψ and ψ−1 ◦ϕ both preserve occurrences of w̃1 when they occur at least
Dk units from w̃0, then for any t ∈ N any element of

P14{p ∈ Z : σp(ϕ−1 ◦ ψ)t(x) ∈ [w̃1]+0 }
is within distance Dk of an element of P0. Further defining for each 1 < i < k the
set

Pi := {p ∈ Z : σpx ∈ [w̃i]
+
0 },

it follows by induction that for any t ∈ N, any element of

Pi4{p ∈ Z : σp(ϕ−1 ◦ ψ)t(x) ∈ [w̃i]
+
0 }

lies either within distance iDk of an element of P0, within distance (i− 1)Dk of an
element of P1, . . . , or within distance Dk of an element of Pk−1. Recall that, by
assumption, the set {

p ∈ Z : σpx ∈
k−1⋃
i=0

[w̃i]
+
0

}
does not contain any element within distance Dk+1 of the origin. But D̃k+1 <
Dk+1 − k ·Dk, and so for any t ∈ N, the set{

p ∈ Z : σp(ϕ−1 ◦ ψ)t(x) ∈
k−1⋃
i=0

[w̃i]
+
0

}
does not contain any element within distance D̃k+1 of the origin. However x ∈ [w̃k]+0
and so, as previously, we have (ϕ−1 ◦ψ)x, (ψ−1 ◦ϕ)x ∈ [wk]+0 . Since this occurrence
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of wk (in the element x) is at least D̃k+1 units from any occurrence of w̃0, . . . , w̃k−1,
we have (ϕ−1 ◦ ψ)x, (ψ−1 ◦ ϕ)x ∈ [w̃k]+0 . �

The following lemma allows us to adapt techniques from [4] which relied on the
fact that in a minimal shift all words occur syndetically.

Lemma 9. Suppose (X,σ) is a subshift. Let

X =: X0 ⊃ X1 ⊃ X2 ⊃ · · · ⊃ Xk

be a descending chain of nonempty subshifts where for each 0 ≤ i < k there exists
wi ∈ L(Xi) such that wi extends uniquely at least T times to the right and left (as a
word in L(Xi)), and Xi+1 = Xi(wi). Suppose further that there exists wk ∈ L(Xk)
that extends at least T times to the right and left but for which Xk(wk) = ∅. Let
w̃i ∈ L(Xi) be the unique word of length |wi|+2T obtained by extending the word wi
by T letters on each side. Finally, for each i = 1, 2, . . . , k, let D ∈ N be the constant
obtained from Lemma 8. Then there exists G ∈ N such that for any x ∈ X, the set

Sx := {j ∈ Z : σix ∈ [w̃0]+0 } ∪ {j ∈ Z : σjx ∈ [w̃i]
+
0 for some 1 ≤ i ≤ k

and σsx /∈ [w̃t]
+
0 for any t < i and any j −D ≤ s ≤ j +D + |w̃i| − 1}

is syndetic with gap at most G.

Proof. If not, then for each G ∈ N there exists xG ∈ X such that Sx is not syndetic
with gap less than G. Without loss (shifting x if necessary), we can assume that
{−bG/2c, . . . , 0, . . . , bGc/2} ∩ Sx = ∅. Since X is compact, we can pass to a
subsequence of (xG)G∈N converging to some y ∈ X. Then Sy = ∅. Therefore
y ∈ Xk(wk), a contradiction of the assumption that Xk(wk) = ∅. �

We use this to describe the set of automorphisms preserving occurrences of the
sequence of words:

Lemma 10. Assume (X,σ) is a subshift and D ∈ N. Let W = {w̃0, w̃1, . . . , w̃k} ⊂
L(X) be a finite set of words for which there exists G ∈ N such that for any x ∈ X,
the set

Sx := {j ∈ Z : σjx ∈ [w̃0]+0 } ∪ {j ∈ Z : σjx ∈ [w̃i]
+
0 for some 1 ≤ i ≤ k

but σsx /∈ [w̃t]
+
0 for any t < i and any j −D ≤ s ≤ j +D + |w̃i| − 1}

is syndetic with gap at most G. Let R ∈ N be such that |wi| > 2R for all w̃i ∈ W
and define

H := {ϕ ∈ AutR(X) : ϕ preserves occurrences of w̃0 and occurrences of

w̃i that occur at least D units from w̃0, w̃1, . . . , w̃i−1 for all 1 ≤ i ≤ k}.
Then 〈H〉 is finite.

Proof. Suppose w1, w2 ∈ W and u ∈ L(X) is such that [w1uw2]+0 ∩ X 6= ∅. Let
ϕ ∈ H. Then ϕ has range R and by assumption we have |w1| > 2R and |w2| > 2R.
Therefore there exists v ∈ L|u|(X) such that ϕ([w1uw2]+0 ∩X) ⊂ [w1vw2]+0 , since ϕ
preserves occurrences of w1, w2 and the block code defining ϕ does not have access
to any information to the left of w1 or to the right of w2 while it acts on the word
u. As any element of 〈H〉 can be written as a product of elements of H, it follows
that if α ∈ 〈H〉 then this same property holds: there exists v ∈ L|u|(X) such that

α([w1uw2]+0 ∩X) ⊂ [w1vw2]+0 ∩X.
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By Lemma 9, any element x ∈ X can be (non-canonically) decomposed as

x = · · ·w−2u−2w−1u−1w0u0w1u1w2u2 · · · ,
where wi ∈ W for all i ∈ Z and ui ∈ L(X) satisfies |ui| ≤ G + max{|w| : w ∈ W}
for all i ∈ Z. Therefore if α ∈ 〈H〉, then α is determined entirely by its action on
sets of the form [w1uw2]+0 ∩ X where |u| ≤ G + max{|w| : w ∈ W}. As there are
only finitely many such sets and the image of each of these is another set of the
same form, there are only finitely many elements of 〈H〉. �

Our final technical lemma quantifies a property of functions which grow subex-
ponentially.

Lemma 11. Let g : N → N be such that log g(n) = o(n). For any k ∈ N and
all sufficiently small ε > 0, there exists M ∈ N such that if N ≥ M and if
f : {0, 1, . . . , N} → N is a nondecreasing function satisfying f(N) ≤ g(N), then
there exists x ∈ {0, 1, . . . , N − k} such that

f(x+ k)− f(x)

f(x)
< ε.

Proof. Let k ∈ N and ε > 0 be fixed. Find M ∈ N such that for all N ≥ M we
have

(1)
log g(N)

N
< ε/4k.

Without loss of generality, we can assume that M > k. Let N ≥ M and let
f : {0, 1, . . . , N} → N be nondecreasing. Suppose that for all 0 ≤ x ≤ N − k we
have

f(x+ k)− f(x)

f(x)
≥ ε.

Then by induction, f(nk) ≥ (1 + ε)nf(0) for all 0 ≤ n < bN/kc. In particular,
since f is nondecreasing,

f(N) ≥ (1 + ε)nf(0)

where n = bN/kc. Therefore

log g(N) ≥ log f(N) ≥ n log(1 + ε) + log f(0) ≥ N

2k
log(1 + ε) >

Nε

3k

for all sufficiently small ε, a contradiction of (1). �

4. Amenability of Aut(X)

Our goal in this section is to prove Theorem 1. We do this first with an added
assumptions: that (X,σ) has dense aperiodic points.

Theorem 12. Let X be a subshift with dense aperiodic points and suppose PX(n) =
o(n2/ log2 n). Then Aut(X) is amenable (as a countable discrete group).

Proof. Fix R ∈ N and let C be as in Lemma 6. Define X0 = X and by Lemma 6,
choose a word w0 ∈ L(X0) such that |w0| ≤ 2R/C log 2R/C and w0 extends
uniquely at least 2R times to the right and to the left. Define w̃0 to be the (unique)
extension of w0 exactly 2R times to each side and set X1 := X0(w̃0). Continue
this process inductively: once we have constructed the nonempty subshift Xi, ap-
ply Lemma 6 to find a word wi ∈ L(Xi) such that |wi| ≤ 2R/C log 2R/C and
such that wi extends at least 2R times to the right and to the left. Define w̃i to
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be the (unique) extension (in L(Xi)) of wi exactly 2R times to each side and set
Xi+1 := Xi(w̃i). If Xi+1 is empty, the process ends. By Lemma 5 this process ends
after at most kR steps, where kR ≤ PX(2L − 1)/L and L = b2R/C log 2R/Cc. It
follows that, as a function of R, kR = o(R/ logR). To summarize, for any R ∈ N
we have constructed a sequence of nonempty subshifts

X := X0 ⊃ X1 ⊃ X2 ⊃ · · · ⊃ XkR

such that for each i = 0, 1, . . . , kR−1 there exists wi ∈ L(Xi) that extends uniquely
(in L(Xi)) at least 2R times to each side and is such that |wi| ≤ 2R/C log 2R/C
and Xi+1 = Xi(w̃i) (where w̃i is the extended version of wi). Note that for all
sufficiently large R, |w̃i| ≤ R2. For fixed R ∈ N, let WR = {w̃1, . . . , w̃kR} and let
GR ⊂ Aut(X) be the subgroup of automorphisms generated by

{ϕ ∈ AutR(X) : ϕ([w̃]+0 ∩X) ⊂ [w̃]+0 ∩X for all w̃ ∈ WR}.
By Lemma 10, GR is finite. Furthermore, by the Pigeonhole Principle, if S ⊂
AutR(X) is any set satisfying

|S| > PX(R2)kR ,

then there exist ϕ,ψ ∈ S such that ϕ(w̃i) = ψ(w̃i) for all i = 0, 1, 2, . . . , kR. In
other words: if S ⊂ AutR(X) is any set satisfying |S| > PX(R2)kR , then there exist
ϕ,ψ ∈ S such that (ϕ−1 ◦ ψ) ∈ GR.

Since PX(R2) ≤ R4/ log2(R2) ≤ R4 for all sufficiently large R, we have

PX(R2)kR ≤ (R4)o(R/ log(R)) = eo(R),

meaning that this grows subexponentially in R. Define g : N → N by g(R) :=
PX(R2)kR . Then by Lemma 11, for any k ∈ N and any sufficiently small ε > 0, there
exists M such for any N ≥M and any nondecreasing function f : {0, 1, . . . , N} →
N, which satisfies f(N) ≤ g(N), there exists 0 ≤ x ≤ N − k such that

f(x+ k)− f(x)

f(x)
< ε.

We are now ready to prove that Aut(X) is amenable. Let k ∈ N be fixed. Choose
ε < 1/k sufficiently small such that Lemma 11 applies and let M be the constant
obtained from this lemma. Choose R > max{k,M} large enough such that

g(R+ k)− g(R)

g(R)
<

ε

4k
.

Let f : {0, 1, 2 . . . , R} → N be the function

f(n) := |{(ϕ(w̃0), ϕ(w̃1), . . . , w̃kR) : ϕ ∈ Autn(X) ↪→ AutR(X)

and WR = {w̃0, . . . , w̃kR}}|.
Here, for n ≤ R, the notation Autn(X) ↪→ AutR(X) refers to the embedded image
of Autn(X) in AutR(X) obtained by using the natural identification of a range
n block code as a range R block code. It follow that if S ⊂ Autn(X) is any set
containing more than f(n) elements, then there exist ϕ,ψ ∈ Autn(X) such that
(ϕ−1 ◦ ψ) ∈ GR. In other words, Autn(X) can be covered by f(n) many cosets of
GR.

By Lemma 11, there exists 0 ≤ n ≤ R− k such that

f(n+ k)− f(n)

f(n)
< ε/2.
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Fix such n and let ϕ1, . . . , ϕf(n) ∈ Autn(X) be representatives of distinct cosets of
GR and such that Autn(X) is contained in

Fk :=

f(n)⋃
i=0

ϕi · GR.

Observe that Fk is finite and contains Autn(X). Now let ϕf(n)+1, . . . , ϕf(n+k) ∈
Autn+k(X) be f(n + k) − f(n) additional representatives of distinct cosets of GR
and such that Autn+k(X) is contained in

F̃k :=

f(n+k)⋃
i=0

ϕi · GR.

Observe that if ψ ∈ Autk(X) then for any i = 0, 1, . . . , f(n) we have (ψ ◦ ϕi) ∈
Autn+k(X). Therefore

ψ · Fk ⊂ F̃k
and since Fk ⊂ F̃k, we have

|Fk4(ψ · Fk)|
|Fk|

≤ 2|F̃k \ Fk|
|Fk|

=
2(f(n+ k)− f(n))

f(n)
< ε ≤ 1

k
.

Let nk ∈ N be the constant n constructed above. Observe that nk →∞ as k →∞.
Construct the set Fk for each k ∈ N. We claim that (Fk)k∈N is a Følner sequence

in Aut(X). By construction, Fk is finite for each k and we have shown that

|Fk4(ψ · Fk)|
|Fk|

<
1

k

for each k ∈ N. Finally, since nk →∞ as k →∞, we have that if ψ ∈ Aut(X) then
{k : ψ /∈ Fk} is finite. Thus we have constructed a Følner sequence for Aut(X) and
so it is amenable. �

We use this to complete the proof of Theorem 1:

Proof of Theorem 1. Let Y ⊂ X be the closure of the aperiodic points in X. By
Theorem 12, Aut(Y ) is amenable. For any ϕ ∈ Aut(X), observe that x ∈ X
is aperiodic if and only if ϕ(x) is aperiodic. Therefore for any ϕ ∈ Aut(X), we
have ϕ(Y ) = Y and the map h : Aut(X) → Aut(Y ) given by h(ϕ) := ϕ|Y is a
homomorphism. Since the image of h is a closed subgroup of Aut(Y ), it is amenable.
Thus to check that Aut(X) is amenable, it suffices to check that ker(h) is amenable.

To show this, it suffices to show that any finitely generated subgroup of ker(h)
is amenable. Let ϕ1, . . . , ϕm ∈ ker(h). We claim that the set

S := {x ∈ X : ϕi(x) 6= x for at least one element of 〈ϕ1, . . . , ϕm〉}
is finite. For contradiction, suppose S is infinite. Choose R ∈ N such that
ϕ1, . . . , ϕm ∈ AutR(X). By construction, if w ∈ L(Y ) is a word of length R and if
Id ∈ Aut(Y ) denotes the identity, then ϕi(w) = Id(w) (as a block map). Therefore
if x ∈ S, there exists j ∈ Z such that σjx ∈ [u]+0 for some word u ∈ L(X) \ L(Y )
of length R (otherwise x is comprised entirely of words of length R on which ϕ
acts as the identity). For each x ∈ S choose a word ux ∈ LR(X) \ LR(Y ) such
that σjx ∈ [ux]+0 for some j ∈ Z. Since LR(X) \ LR(Y ) is finite, there exists
u ∈ LR(X) \ LR(Y ) such that ux = u for infinitely many x ∈ S. For each such
x, let jx ∈ Z be such that σjxx ∈ [u]+0 . Every infinite collection of points has an
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aperiodic limit point, and so there is some aperiodic y ∈ [u]+0 . This contradicts the
fact that u /∈ L(Y ). Therefore S is finite, proving the claim.

Since the set S is finite, it follows that 〈ϕ1, . . . , ϕm〉 is finite (and hence amenable).
�

Corollary 13. Let X be a subshift and suppose there exists ε > 0 such that
PX(n) = O(n2−ε). Then Aut(X) is amenable (as a countable discrete group).

Proof. Any function which is O(n2−ε) is also o(n2/ log2 n), and so this follows
immediately from Theorem 1. �

5. Shifts of subquadratic growth

Recall that if G is a group and g1, g2 ∈ G then

〈g1, g2〉+ := {gi1g
j
2 : i, j ∈ N ∪ {0}}

is the semigroup generated by g1 and g2 in G. This semigroup is free if whenever
i1, i2, j1, j2 ∈ N ∪ {0} and (i1, j1) 6= (i2, j2), we have gi11 g

j1
2 6= gi21 g

j2
2 . If this

semigroup is free, it is said to have rank 2 because it is generated by two elements
of G.

Let (X,σ) be a subshift. The full group of (X,σ), denoted [σ], is the group of all
maps ϕ : X → X such that there exists k : X → Z such that ϕ(x) = σk(x)(x) for all
x ∈ X. The group [σ]∩Aut(X) is the group of all orbit-preserving automorphisms.
This is a normal, abelian subgroup of Aut(X).

We recall the statement of Theorem 2:

Theorem 2. Let (X,σ) be a subshift such that lim inf PX(n)/n2 = 0. Then Aut(X)
does not contain a free semigroup of rank 2.

Our main tool to prove this theorem is the following rephrasing given in [2] of a
result of Quas and Zamboni:

Lemma 14 (Quas-Zamboni [9]). Let n, k ∈ N. Then there exists a finite set

F ⊂ Z2 \{(0, 0)} (which depends on n and k) such that for every η ∈ AZ2

satisfying
Pη(n, k) ≤ nk/16 there exists a vector v ∈ F such that η(x + v) = η(x) for all
x ∈ Z2.

We now adapt the technique developed in [2] to prove Theorem 2.

Proof of Theorem 2. Let X ⊂ AZ be a subshift and suppose PX(n) = o(n2). For

each ϕ ∈ Aut(X) and each x ∈ X, define ηϕ,x ∈ AZ2

by setting ηϕ,x(i, j) :=
(ϕjσi)(x) (this is the space time of the system). Finally let

Yϕ,x ⊂ AZ2

:= {ηϕ,x ◦ SjT i : (i, j) ∈ Z2}
where S, T : Z2 → Z2 are the vertical and horizontal shifts, respectively: S(i, j) :=
(i, j + 1) and T (i, j) := (i + 1, j). Since PX(n) = o(n2), it follow from [2, Lemma
2.1] that PYϕ,x(n, n) = o(n2) (however the rate at which PX(n)/n2 tends to zero
depends on the range of ϕ).

For contradiction, suppose ϕ,ψ ∈ Aut(X) generate a free semigroup. Let Z ⊂ X
be the closure of the aperiodic elements of X and as already noted, Z is Aut(X)-
invariant. By Theorem 14, there exists a finite set F ⊂ Z2 \ {(0, 0)} such that for
any x ∈ Z the maps ηϕ,x and ηψ,x are both periodic with some period vector in
F . Note that if x is aperiodic, then ηϕ,x and ηψ,x cannot be horizontally periodic.
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Therefore there exists M ∈ N such that ηϕ,x and ηψ,x both have period vectors
with y-coordinate M , for all aperiodic x ∈ Z. It follows that ϕMx and ψMx are
both shifts of x. As this holds for all aperiodic x ∈ X, the restrictions of ϕM and
ψM to Z are both elements of the abelian group Aut(Z) ∩ [σ]. In particular, the
restriction of the commutator [ϕM , ψM ] to Z is the identity.

Suppose the range of [ϕM , ψM ] is R. If w ∈ LR(X) is such that [w]+0 contains
an aperiodic point, then [ϕM , ψM ] acts like the identity map (when thought of as a
range R block code) on w. It follows that if [ϕM , ψM ] does not act like the identity
map on [w]+0 , then [w]+0 ∩X does not contain any aperiodic points. Furthermore,
this means that [w]+0 ∩X can not contain periodic points of arbitrarily large period.
Therefore, X \ Z is finite and so there exists k ∈ N such that [ϕkM , ψkM ] is the
identity on X; contradicting the fact that ϕkM and ψkM do not commute (since ϕ
and ψ generate a free semigroup). �

While Theorem 2 applies to a larger class of shifts than Theorem 1, it does not con-
clude that Aut(X) amenable. Nevertheless, Theorem 2 does give algebraic infor-
mation about Aut(X) (in particualr it cannot contain a non-abelian free subgroup)
and a recent result of Salo and Schraudner shows that it is essentially optimal:

Theorem 15 (Salo-Schraudner [10]). There exists a subshift (X,σ) such that

PX(n) = (n+ 1)2

and is such that Aut(X) contains a free semigroup of rank 2.

The example that they construct is the Cartesian product of two copies of the
subshift X on the alphabet {0, 1} where each x ∈ X contains at most one occurrence
of 1.

We present here a second example (different from that of [10]) of a shift of
quadratic growth whose automorphism group contains a free semigroup of rank 2.

Let A be the eight letter alphabet {0, 1, a, b, p, 1p, ap, bp}. We consider the sub-
shift X ⊂ AZ consisting of the following:

(i) the coloring of all 0’s;
(ii) any coloring which is all 0’s except at a single location where it is one of

1, a, b, p, 1p, ap, or bp;
(iii) any coloring which is all 0’s except at two locations, one of which is p and

the other of which is one of 1, a, or b.

We leave it to the reader to check that this does indeed form a (closed) subshift
and that its complexity function grows quadratically. To show that this contains a
free semigroup, we define two automorphisms of X which we call ϕa and ϕb. These
are range 1 block codes and we claim they generate a free semi-group of rank 2.
Rather than define them on each block, we find the following description helpful.
A person, p, walks down a bi-infinite hallway. At one location in the hallway there
is a nail on the wall and there are two possible pictures, a and b, than can be hung
on the nail. When the nail is unoccupied, its location is denoted 1. When it holds
picture a, its location is a. When it holds picture b, its location is b. If the person is
standing in front of the nail, the person/nail is denoted 1p, ap, or bp (depending on
the state of the nail). Now we can define our automorphisms. When ϕa is applied
to an element of X it moves the person one space to the right. If this causes the
person to be standing in front of the nail they take one of three actions:

• if the nail is unoccupied, the person hangs picture a on it;
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• if the nail holds picture a, the person removes it and leaves the nail unoc-
cupied;

• if the nail holds picture b, the person leaves the picture undisturbed.

We claim that these rules can be implemented by a range 1 block code and that ϕa is
invertible. Similarly when ϕb is applied to an element of X it moves the person one
space to the right. If this causes the person to be standing in front of the nail, the
analogous rules (with the roles of a and b reversed) apply. This is also invertible and
can be implemented by a range 1 block code. Note that ϕa and ϕb carry elements
of X to elements of X. Finally suppose w = (w1, w2, . . . , wk) ∈ {a, b}k and let
g ∈ 〈ϕa, ϕb〉+ be

g = g1g2 · · · gk
where gi ∈ {ϕa, ϕb} for each 1 ≤ i ≤ k is the automorphism corresponding to letter
wi. First we show how to find k by observing the action of g on X. For each i ∈ N,
let xi ∈ X be the configuration which has a 1 at the origin, a p exactly i spaces
to the left of the origin, and 0’s elsewhere. Note that gxk places the person at the
origin and gxi places the person off the origin for all i 6= k. Consequently, the length
of a minimal presentation of g by ϕa and ϕb can be deduced from this information
and all representations of g as a product of ϕa and ϕb (but not their inverses) have
the same length. Now fix 1 ≤ i ≤ k. Then gxk−i+1 is a configuration with the
letter representing gi (a or b) at the origin. Therefore the natural surjection from
{a, b}∗ to 〈ϕa, ϕb〉+ is an injection and so this is the free semi-group of rank 2.
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