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Abstract. Given a dynamical system, a characteristic measure is a Borel

probability measure invariant under all of its automorphisms. Frisch and

Tamuz asked if every symbolic system supports such a measure. Motivated by
this problem, we study the natural cover of a subshift by its shift of finite type

approximations and two senses in which this cover can be said to stabilize. The

first is in terms of entropy decay and the second in terms of periodic points.
We show that the first type of stabilization gives a new characterization of

the class of language stable shifts and demonstrates that there is a mechanism
for producing a characteristic measures that relies only on entropy differences.

For the second type of stabilization, we show that this defines a new class of

subshifts, invariant under conjugacies, that have characteristic measures.

1. Characteristic measures

Given a symbolic dynamical system (X,σ), there is a canonical sequence of ap-
proximations to X by simpler systems: subshifts of finite type. We study the
interplay between the properties of X and various senses in which this approximat-
ing sequence stabilizes. Our motivation to study stabilizations is to make progress
on the characteristic measure problem introduced by Frisch and Tamuz [6]. They
define a measure to be characteristic for a topological system (X,T ) if it is invariant
under the automorphism group Aut(X,T ). Not every topological system supports
such a measure, for instance it is mentioned in [6] that the identity map acting on
the Cantor set does not. There are even examples of minimal systems that fail to
support a characteristic measure [5].

On the other hand, there are many classes of symbolic systems known to support
a characteristic measure. For instance, Parry [9] shows that any mixing shift of
finite type has a unique measure of maximal entropy, which therefore must be a
characteristic measure. Though not phrased in this terminology, it follows from
the Krylov-Bogolubov theorem that any system with an amenable automorphism
group supports such a measure. It is easy to check that any symbolic system with
a periodic point also has a characteristic measure. Frisch and Tamuz [6] show that
any symbolic system with zero entropy supports one. They also pose the general
question [6, Question 1.3]: does every symbolic Z-system support a characteristic
measure?

A fruitful approach to this problem has been to make use of the SFT cover
{Xn}n∈N of a subshift (X,σ). This is a canonical sequence (Xn, σn) of shifts of
finite type such that

X =
⋂
n∈N

Xn
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Using this cover, [2] introduces the class of language stable shifts, where the sub-
shifts in the SFT cover stay constant for arbitrarily long runs. Every language
stable shift supports a characteristic measure [2]. These shifts were further studied
in a quantitative way in [3], where it is shown that factors of language stable shifts
have characteristic measures, provided the the approximating sequence in the SFT
cover satisfies a well appoximability property.

In this work, we introduce two notions of stability for the SFT cover of a shift,
that imply the existence of a characteristic measure. Each class defined by these
conditions contains all language stable shifts, but new methods are used to show
the existence of characteristic measures. Define a shift (X,σ) to be period stable if
for all m ∈ N, there exist n, p ∈ N such that the set of periodic points of minimal
periodic p in Xn is the same as the set of periodic points of minimal periodic p in
Xn+m (see Definition 4.1). In Section 4, we show that this condition suffices for
the existence of a characteristic measure.

Theorem 1.1. Every period stable subshift supports a characteristic measure.

It is easy to check that any shift that has at least one periodic point is period
stable, and so the theorem is most interesting in the case that X does not have any
periodic points. In this case, the terms of the SFT cover {Xn}∞n=1 provide a “halo
of periodic points,” that are not actually elements of X but nevertheless allow us
to find a characteristic measure for X. Furthermore, any language stable shift X
(see [2]) has the property that for all m ∈ N there exists n such that Xn+m = Xn

and so in particular, any such shift is also period stable. We show that our result
goes beyond the cases of a shift with periodic points or a language stable shift,
as both such classes are already known to support a characteristic measure. In
Section 4.2, we build an example to show that the class of period stable shifts
contains a subshift that has no periodic points and is not language stable.

In [2], it is also shown that all language stable shifts have a characteristic measure
that is a measure of maximal entropy. Though we show that all period stable shifts
also have a characteristic measure, the measure we produce is not necessarily one
of maximal entropy.

Turning to a different type of stability, we consider of the entropy of shifts in the
the SFT cover. We define the class of entropy stable shifts in Section 3, and show
that again this type of stability gives rise to a characteristic measure.

Theorem 1.2. Every topologically mixing entropy stable subshift supports a char-
acteristic measure.

In Section 3.3, we show that the class of entropy stable shifts is, in fact, a new
characterization of the class of language stable shifts. Although these two classes
coincide, the mechanism used to show that entropy stable shifts have characteristic
measures depends only on the entropy drops in terms in the SFT cover. While
not providing a new class of shifts not previously known to have characteristic
measures, the method used in [2] fundamentally requires a symbolic structure for
showing language stable shifts have characteristic measures: the proof relies in a
crucial way on the fact that automorphisms of language stable shifts are defined by
block codes and extend to automorphisms of all but finitely many terms in the SFT
cover of a language stable shift. In contrast, our proof that entropy stable shifts
have characteristic measures only makes use of the entropy drop between runs of
consecutive terms in the SFT cover. Thus our method may well extend to some
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non-symbolic systems, giving a way to study more general topological dynamical
systems using a natural cover by simpler systems.

2. Notation and background

2.1. Subshifts and the language. Assume that A = A(X) is a finite alphabet
and write x ∈ AZ as x =

(
x(n) : n ∈ Z

)
. The left shift σ : AZ → AZ is defined by

(σx)(n) = x(n + 1) for all n ∈ Z. If X ⊆ AZ is nonempty, closed and σ-invariant,
then we say that (X,σ) is a subshift.

For each word w ∈ A∗, let |w| denote the length of w, let wi denote the i
th letter

of w (0 ≤ i < |w|), and let

[w] := {x ∈ AZ : x(i) = wi for all 0 ≤ i < |w|}
be the cylinder set determined by w.

In general, we use the convention that a subscript wi to denote the ith letter in
the finite word w and x(i) to denote the ith letter in the element (infinite word)
x ∈ X. However, when elements of X have indices, we abuse the notation and
combine these (such as in Section 4.2.2), but this should be clear from context.

For a subshift (X,σ), for each n ∈ N we write

Ln(X) := {w ∈ An : [w] ∩X ̸= ∅}
for the words of length n in the language L(X) :=

⋃∞
n=1 Ln(X) of X. We refer

to any word in the language of X as an admissible word. If a, u, b ∈ L(X) and
w = aub ∈ L(X), with the convention that one of a and b may be empty, we refer
to u as a subword of w, and we refer to a as a prefix of the word w and b as a suffix
of the word w. If w ∈ L(X), we write w∞ for the infinite periodic word www . . .
to the right and ∞w for the infinite periodic word . . . www to the left.

If F ⊆ A∗ then

XF := {x ∈ {0, 1}Z : σi(x) /∈ [w] for all i ∈ Z and w ∈ F}
is a subshift. Any subshift (X,σ) can be defined by specifying its language L(X), or
equivalently by specifying its canonical set of forbidden words F(X) := A∗ \ L(X)
because X = XF(X). In general, however, there could be a set F ⊆ A∗ such that
X = XF but F ̸= F(X). In this case, we say that X can be defined with F . A
subshift (X,σ) is a shift of finite type if it can be defined with a finite set F . We say
that a forbidden word is minimal if it has no proper subword which is a canonical
forbidden word, and note that the set of minimal forbidden words is a canonical
way to define a subshift. A shift of finite type is called nearest-neighbor if it is
defined with a finite set F of forbidden words all of which have length at most 2.

2.2. The SFT cover of a subshift. For a subshift (X,σ) with forbidden words
F(X), for each n ∈ N let Fn(X) := An \ Ln(X) denote the forbidden words of
length n in X. Define Xn to be the subshift of finite type in AZ whose set of
forbidden words is

⋃n
k=1 Fk(X). The sequence {Xn}∞n=1 is called the SFT cover of

X, and it follows immediately from the definitions that

X1 ⊇ X2 ⊇ X3 ⊇ · · · ⊇ Xn ⊇ Xn+1 ⊇ . . .

and the reader can check that X =
⋂∞
n=1Xn.

A subshift (X,σ) is mixing if for all words u, v ∈ L(X), there is some N ∈ N such
that for all n ≥ N there is some word w ∈ Ln(X) such that uwv ∈ L(X). When
the subshift (X,σ) is mixing, then each Xn in its SFT cover is also mixing. In
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that case, it follows from Parry [9] that each Xn has a unique measure of maximal
entropy µn.

2.3. The automorphism group of a subshift. Let φ ∈ Aut(X) be an automor-
phism of the subshift (X,σ), meaning that φ : X → X is a homeomorphism and
φ ◦ σ = σ ◦ φ. Let Aut(X) = Aut(X,σ) denote the group of all automorphisms of
the subshift (X,σ).

Given an automorphism φ of the subshift (X,σ), by the Curtis-Hedlund-Lyndon
theorem there exists R ∈ N and a map Φ: L2R+1(X) → A such that

(φ(x))(i) = Φ(x(i−R)x(i−R+ 1) . . . x(i) . . . x(i+R− 1)x(i+R))

for all x ∈ X and all i ∈ Z (note that we have added commas in the word in x of
length 2R + 1 for clarity). We call Φ a block map implementing φ, R the range of
the block map, and φ a sliding block code with range R. The parameter R is not
uniquely defined, and if φ has range R then it also has range R′ for any R′ ≥ R.

Let AutR(X) denote the set of all φ ∈ Aut(X) with the property that both φ and
φ−1 are sliding block codes of range R. It follows immediately from the definitions
that Aut(X) =

⋃∞
R=0 AutR(X) and AutR(X) ⊆ AutR+1(X) for all R ≥ 1. We

note the following elementary lemma for use in Section 4.

Lemma 2.1. Assume that φ ∈ Aut(X) has range R and that Φ,Φ−1 : L2R+1(X) →
A are range R block maps that implement φ,φ−1, respectively. Then Φ−1 ◦ Φ
implements the identity map Id : X → X as a range 2R block code.

Proof. Assume that {Xn}∞n=1 is the SFT cover of X. For any n ≥ 2R+1, the map
Φ (analogously for the Φ−1) defines a map whose domain is Xn by applying the
block map Φ as a sliding block code to the elements of Xn. By an abuse of notation,
we use φ to denote the resulting automorphism of Xn. A priori, this extends the
domain of φ : X → X to a new map φ : Xn → A∗ for any n ∈ N, with the property
that φ maps elements of X to elements of X. However, since φ(X) = X, we claim
that if k ∈ N is fixed and w ∈ L2R+k(X) is a fixed word, then the word Φ(w) ∈ Ak

given by

(Φ(w))(j) = Φ(wj , wj+1, . . . , wj+R, . . . , wj+2R−1, wj+2R)

for each 0 ≤ j < k is an element of Lk(X). Namely, for each w ∈ L2R+k(X), there
exists some x ∈ [w] ∩ X and the word Φ(w) occurs as a subword of φ(x) ∈ X.
In particular, φ(X2R+k) ⊆ Xk. For k ≥ 2R + 1, this allows us to apply Φ−1 to
Φ(w) and obtain an element of Lk−2R(X). Since Φ and Φ−1 are block codes that
implement inverse maps from X to X, it follows that (Φ−1 ◦ Φ)(w)j = wj for all
4R < j < |w| − 4R. In other words, Φ−1 ◦ Φ implements the identity map as a
range 2R block code: if k ≥ 2R+ 1 and we apply Φ−1 ◦Φ to a word in L2R+k(X),
the map removes the rightmost and leftmost 2R letters from the word and leaves
the middle of the unchanged. □

2.4. Measures and entropy. If (X,σ) is a subshift, we let htop(X) denote the
topological entropy of X and if µ is a σ-invariant measure on X, we let hµ denote
the entropy of the measure µ.

The measure µ is a characteristic measure for the subshift (X,σ) if µ is invariant
under the automorphism group Aut(X,σ).
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3. Entropy stability

3.1. Quantifying a stability condition. We start by giving a condition on the
language of a subshift that suffices to ensure that high entropy measures are close for
words up to a fixed length (this property is often called effective intrinsic ergodicity
in the literature).

Theorem 3.1. Let (X,σ) be a mixing shift of finite type with measure of maximal
entropy µ. Let F be the maximal length of a minimal forbidden word and let s be
the number of admissible words of length F . Let ε > 0 and ℓ ∈ N. Suppose µ′ is an
invariant probability measure on (X,σ) satisfying

hµ′ > htop − ε2

( 43 )
2ℓ(ξ(s))2

,

where

(1) ξ(s) =
30s3(s

2+1)

1−
(
1− 1

4s2s2

) 1
s2

.

Then for all admissible words w of length at most ℓ, we have |µ′([w])−µ([w])| < ε.

We note that the function ξ(s) is positive and increasing in s.
Our proof makes use of a method of Kadyrov [7] introduced to give an quan-

titative version on the existence of a unique measure of maximal entropy for a
nearest-neighbor subshift of finite type. We start by introducing some notation
and results from [1] and [10] on the spectral properties of the Ruelle transfer oper-
ator. Given a mixing shift of finite type (X,σ), define (X+, σ) to be the one-sided
subshift version of X. Letting C(X+) denote the continuous real valued functions
on X+, define the Ruelle transfer operator L : C(X+) → C(X+) by

Lf(x) =
∑
σy=x

f(y).

There is a simple maximal positive eigenvalue λ of L, with corresponding strictly
positive eigenfunction h. (Here we follow the convention of Bowen that h de-
notes this eigenfunction and should not be confused with the notation for entropy
throughout this work.) The eigenvalue λ also satisfies htop(X

+) = log λ. There is
a unique probability measure ν satisfying L∗ν = λν, and without loss we further
assume that h satisfies ν(h) = 1.

The normalized transfer operator L0 : C(X
+) → C(X+) is given by

L0 =
1

λ
∆−1
h L∆h,

where ∆h : C(X
+) → C(X+) is the operator f 7→ hf. The spectrum of L0 is the

spectrum of L scaled by a factor of λ, and the constant functions are the eigenfunc-
tions corresponding to the maximal eigenvalue. The corresponding eigenmeasure is
the measure of maximal entropy µ of (X+, σ) and is given by dµ = h dν.

In the next proposition, we assume that X+ is a nearest-neighbor shift of finite
type. We later recode general shifts of finite type as nearest-neighbor shifts of finite
type in the proof of Theorem 3.1.

Proposition 3.2. Let (X+, σ) be a mixing nearest-neighbor shift of finite type with
measure of maximal entropy µ. Let w be an admissible word of length ℓ ≥ 1 and
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let f = 1[w] and g = f − µ(f). There exist A > 0 and β ∈ (0, 1) such that for all
n ≥ 0,

(2) ∥Ln0 g∥∞ ≤ A∥h∥∞
inf h

βn−ℓ,

where L0 is the normalized transfer operator and h is the eigenfunction associated

to L. Furthermore, letting s denote the size of the alphabet, we have ∥h∥∞
inf h ≤ ss,

and we can choose A ≤ 15s2s
2

and

3

4
≤ β ≤

(
1− 1

4s2s2

) 1
s2

.

Proof. Let L : C(X+) → C(X+) denote the Ruelle transfer operator, λ its (simple
and positive) maximal eigenvalue with eigenfunction h, and ν be the unique prob-
ability measure such that L∗ν = λν. By [1, Lemma 1.12], there exist A > 0 and
β ∈ (0, 1) such that for all n ≥ ℓ,

∥ 1
λnLn(hg)∥∞ ≤ Aν(|hg|)βn−ℓ.

Since L0 = 1
λ∆

−1
h L∆h, it follows that

(3) ∥Ln0 g∥∞ ≤ 1

inf h
∥ 1
λnLn(hg)∥∞ ≤ A

inf h
ν(|hg|)βn−ℓ ≤ A∥h∥∞

inf h
βn−ℓ.

To prove the bound on h, let Q denote the transition matrix of X+ and let M
be its primitivity exponent. A (sharp) bound for M , due to Wielandt [13], is

(4) M ≤ (s− 1)2 + 1.

Let u be a left Perron-Frobenius eigenvector for Q and define ψ : X+ → R by

(5) ψ(x) = ux(0).

Then

(Lψ)(x) =
∑
i

Qix(0)ψ(ix(0)x(1) . . . ) =
∑
i

uiQix(0) = λux(0) = λψ(x),

so ψ is an eigenfunction for λ. Since λ is a simple eigenvalue of L, the eigenfunction
h is unique up to scaling. The assumption that ν(h) = 1 therefore implies that
h = 1

ν(ψ)ψ. In particular, by the definition (5) of ψ, the eigenfunction h depends

only on the first entry.

For n < ℓ, direct computation shows that Ln0 g(x) =
h(x(0))

λnh(x(n)) −µ(f). Recall that
h is strictly positive and takes finitely many values, 0 ≤ µ(f) ≤ 1, and λ > 1. If
h(x(0))

λnh(x(n)) > µ(f), then∣∣∣∣ h(x(0))

λnh(x(n))
− µ(f)

∣∣∣∣ ≤ h(x(0))

λnh(x(n))
≤ h(x(0))

h(x(n))
≤ ∥h∥∞

inf h
.

Otherwise, ∣∣∣∣ h(x(0))

λnh(x(n))
− µ(f)

∣∣∣∣ ≤ 1 ≤ ∥h∥∞
inf h

.

Without loss of generality, we may assume that A ≥ 1, and since n < ℓ,

∥h∥∞
inf h

≤ A∥h∥∞
inf h

βn−ℓ.

Combining this with (3), we conclude that (2) holds for all n ≥ 1.
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Letting up = mini ui, and uq = maxi ui, we have

∥h∥∞
inf h

=
uq
up
.

Consider the graph described by Q. Since X is transitive, there exists a path from
q to p of length t < s, i.e. (Qt)qp ≥ 1. Since u is a left eigenvector, we have

λtup = (uQt)p =
∑
j

uj(Q
t)jp ≥ uq,

which gives

(6)
uq
up

≤ λt ≤ ss.

The first inequality follows.
We are left with proving that the bounds on A and β hold. In [1], it is shown

that

A =
(∥h∥∞ +K) sup0<r≤M ( 1

λr ∥Lr∥)
1− η

and β = (1− η)
1
M ,

where η = (4λM∥h∥∞)−1 and K = λMe2. A bound on M is given in (4) and so we
must find bounds for λ and ∥h∥∞ in terms of s.

Recall that htop(X
+) = log λ. It follows that λ is the Perron-Frobenius eigen-

value of Q, and since Q is an irreducible s×s matrix with entries in {0, 1}, we have
1 < λ ≤ s. Since by (5) h depends only on the first entry, the condition ν(h) = 1
can be expressed as

(7)
∑
i

ν([i])h(i) = 1.

We also have that
∑
i ν([i]) = 1, and so ∥h∥∞ ≥ 1. To derive an upper bound on

h, let v denote the vector vi = ν([i]). Then, since ν is an eigenmeasure,

(Qv)i =
∑
j

Qijvj =

∫
X+

Qix(0)dν(x) =

∫
X+

L1[i]dν = λ

∫
X+

1[i]dν = λvi,

and it follows that v is a right Perron-Frobenius eigenvector. In particular, v is
strictly positive. Combining this with (7), we have

∥h∥∞ ≤ 1

mini vi
.

A similar argument as used to derive (6) gives that maxi vi
mini vi

≤ λs, and
∑
i vi = 1

implies that maxi vi ≥ 1
s . Combining these, we have ∥h∥∞ ≤ sλs ≤ ss+1. It follows

that
1

4s2s2
≤ 1

4ss2+s+1
≤ η ≤ 1

4
.

To complete the proof, we bound sup0<r≤M ( 1
λr ∥Lr∥). Let r ≥ 1 and ϕ ∈ C(X+).

Then

|Lrϕ(x)| ≤
∑
σry=x

|ϕ(y)| ≤ ∥ϕ∥∞
∑
i

(Qr)ix(0) ≤ ∥ϕ∥∞sr ≤ ∥ϕ∥∞ss
2

.

Thus we have that ∥Lr∥ ≤ sr and sup0<r≤M ( 1
λr ∥Lr∥) ≤ ss

2

. It follows that

A ≤ 4s2s
2

(1 + e2)

3
≤ 15s2s

2

and
3

4
≤ β ≤

(
1− 1

4s2s2

) 1
s2

,
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giving the last two inequalities in the proof. □

We use this to complete the proof of Theorem 3.1.

Proof of Theorem 3.1. Assume that (X,σ) is a mixing shift of finite type with mea-
sure of maximal entropy µ, and fix ε > 0 and an admissible word w of length ℓ.
Let (X+, σ) be the one-sided subshift version of (X,σ). We note that µ defines a
measure of maximal entropy on (X+, σ) by declaring all cylinder sets in (X+, σ)
to have the same measure that µ gives to them in (X,σ) and note that entropy is
preserved via this procedure. Therefore, we prove this theorem in the setting of
(X+, σ) as the conclusion only depends on measures of cylinder sets. In a slight
abuse of notation, we continue to use the notation (X,σ) for the system rather than
(X+, σ).

We begin by recoding X on words of length F . In other words, we create a
directed graph whose vertices are the words in LF (X) and that has a directed edge
from (a0, . . . , aF−1) to (b0, . . . , bF−1) if and only if ai+1 = bi for all 0 ≤ i < F − 1.

Then X̃ is the shift of finite type presented by this directed graph. We refer to this
new shift as X̃ and note that X is topologically conjugate to X̃. Let ψ : X → X̃
be a conjugacy map and µ̃ be the measure on X̃ corresponding to µ.

If ℓ ≥ F, then ψ[w] ⊂ X̃ is a cylinder of length ℓ − F + 1 in X̃, and we denote
this cylinder by [w̃]. Set f = 1[w̃], g = f − µ̃(f), and gn = Ln0 g. By a result of
Kadyrov [7, Lemma 3.2], we have that

|µ̃′(gn+1)− µ̃′(gn)| ≤
√
2∥gn∥∞(hµ̃ − hµ̃′)1/2

for any invariant probability measure µ̃′. By Proposition 3.2,

∥gn∥∞ ≤ A∥h∥∞
inf h

βn−ℓ+F−1,

and in particular,

lim
n→∞

gn = 0 = µ̃(g).

Let µ′ be any invariant probability measure on X and µ̃′ be its pushforward under
ψ. Since ψ is a topological conjugacy, hµ = hµ̃ and hµ′ = hµ̃′ . Then, we have

|µ′([w])− µ([w])| = |µ̃′(g)− µ̃(g)|

= lim
n→∞

|µ̃′(g)− µ̃′(gn)| ≤
∞∑
n=0

|µ̃′(gn+1)− µ̃′(gn)|

≤
√
2AβF−1∥h∥∞
βℓ(1− β) inf h

(hµ − hµ′)1/2 ≤
√
2A∥h∥∞

βℓ(1− β) inf h
(hµ − hµ′)1/2,

which is smaller than ε whenever

(8) hµ − hµ′ <
ε2( √

2A∥h∥∞
βℓ(1−β) inf h

)2 .

The three bounds given in Proposition 3.2 imply that(
4

3

)ℓ
ξ(s) ≥

√
2A∥h∥∞

βℓ(1− β) inf h
,
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where s is the alphabet size for X̃, which is equal to the number of admissible words
of length F in X. One can check that, in fact, |µ′([w])−µ([w])| < ε

s when hµ− hµ′

satisfies (8).
If ℓ < F , the argument is similar. In this case, ψ[w] =

⊔r
i=1[α̃i], where each α̃i

is a symbol in the alphabet for X̃ and r < s. We apply this argument, replacing w̃
by α̃i (and using the bound ε/s instead of ε), to see that whenever

hµ − hµ′ <
ε2

( 43 )
2ℓ(ξ(s))2

,

we have |µ̃′[α̃i]− µ̃[α̃i]| < ε
s . The triangle inequality then gives

|µ′[w]− µ[w]| ≤
r∑
i=1

|µ̃′[α̃i]− µ̃[α̃i]| < ε. □

3.2. A characteristic measure for entropy stable shifts. We show that a
sufficiently small entropy drop in the SFT cover a shift suffices for the existence of
a characteristic measure.

Theorem 3.3. Assume that {Xn}n∈N is the SFT cover for a topologically mixing
system (X,σ). Assume that for each ε > 0 and integers ℓ, j ≥ 1, there is an integer
m = m(ε, ℓ, j) such that

(9)
∣∣htop(Xm)− htop(Xm+j)

∣∣ < Ξ(ε, ℓ, j)

for the function Ξ(ε, ℓ, j) = ε2

( 4
3 )

2ℓ(ξ(sm))2
, where sm ≤ |A(X)|m is the number of

admissible words of length m in Xm and ξ is defined in (1). Then the system (X,σ)
supports a characteristic measure.

Definition 3.4. A topologically transitive subshift (X,σ) with an SFT cover sat-
isfying the conditions of Theorem 3.3 is said to be entropy stable.

Proof. We start by producing a measure µ on the system (X,σ) that is a weak*
limit of the measures (µm)m∈N, where µm denotes the measure of maximal entropy
on Xm. The (positive) function Ξ(ε, ℓ, j) is monotonically decreasing in each of the
parameters: as ε tends to zero, as the integer ℓ tends to infinity, and as j → ∞.
Thus if (9) holds for some m ∈ N, some ε0 > 0 and some ℓ0, j0 ∈ N, then (9) also
holds for the same m, and for ε > 0 and ℓ, j ∈ N, whenever ε ≥ ε0, ℓ ≤ ℓ0, and
j ≤ j0. Given ε > 0 and ℓ, j ∈ N, let m(ε, ℓ, j) be the value of m for which (9)
holds. For notational convenience, we define mn := m(1/n, n, n).

Let ϕ ∈ Aut(X,σ) and assume that ϕ has range R (we always assume that the
range is symmetric so that ϕ−1 also has range R). Fix a word w ∈ L(X). Choose
n ∈ N that is larger than max{|w|, 2R+ 1}. By the definition of mn, we have that

|htop(Xmn
)− htop(Xmn+n)| < Ξ(1/n, n, n).

Since hµmn+n(σ) = htop(Xmn+n), we have that

(10) hµmn+n(σ) > htop(Xmn)− Ξ(1/n, n, n).

We also have that hϕ∗(µmn+n)(σ) = hµmn+n
(σ) since ϕ is a topological conjugacy

between Xmn+n and ϕ(Xmn+n). Moreover, since ϕ(Xmn+n) ⊆ Xmn+n−2R ⊆ Xmn ,
we have that ϕ∗µmn+n is a measure on Xmn . Therefore it also follows that

(11) hϕ∗(µmn+n)(σ) > htop(Xmn
)− Ξ(1/n, n, n).
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Thus it follows from Theorem 3.1 and (10) that

|µmn+n([w])− µmn([w])| <
1

n

and from Theorem 3.1 and (11) that

|ϕ∗µmn+n([w])− µmn([w])| <
1

n
.

Combining these, we obtain that

(12) |ϕ∗µmn+n([w])− µmn+n([w])| <
2

n
.

Let µ be a weak* limit of the sequence (µmn+n)n∈N. Since (12) holds for all suffi-
ciently large n, it follows that

(13) |ϕ∗µ([w])− µ([w])| = 0.

As (13) holds for any word w ∈ L(X), it follows that ϕ∗µ = µ. Since this holds for
any ϕ ∈ Aut(X), it follows that µ is a characteristic measure on X. □

3.3. Equivalency of entropy stability and language stability. Language sta-
ble shifts have the property that for all j ∈ N, there exists m ∈ N such that
Xm = Xm+j . Thus any language stable shift is also entropy stable. For a con-
verse statement, we start with a calculation of the change in entropy that happens
when a single word is removed from the language. Though such bounds can pos-
sibly be derived from existing results [8, 12], we provide a self-contained proof for
convenience.

Theorem 3.5. If X is a nontrivial transitive nearest-neighbor shift of finite type
with alphabet size n and the shift of finite type Y is obtained by removing a single
word w of length k > 1 from the language of X, then

htop(X)− htop(Y ) > htop(X)e−2(3n+4k)htop(X).

Proof. Choose X,h, n, k, w as in the statement. Take any letter a such that ν([a]) ≥
1/n for some ergodic measure of maximal entropy ν for Y . Since a ∈ L(Y ), there
exists a word u such that ua has no occurrences of w and |u| = n+3k. By transitivity
of X, there exist words t, t′ of minimal length such that at has w as its suffix and
t′ua has w as its prefix. By assumption of minimal length, 0 < |t|, |t′| < n+ k, and
neither at nor t′ua contain any other occurrences of w. Gluing these words together
on the central w yields a word atva which contains only one occurrence of w (as
the suffix of at). Furthermore, we have that |v| = |u|+ |t′| − k ∈ (n+ 2k, 2n+ 3k).

For any m, define Zm to be the set of words in Lm(Y ) with more than m
2n

occurrences of a. By the ergodic theorem, ν(Zm) approaches 1, and so by [11,
Corollary 2.7],

m−1 ln |Zm| → h(ν) = htop(Y )

as m→ ∞.
Choose any 0 < ε < 1

2n . For any word y ∈ Zm, define AY = {i : y(i) = a}. By
definition, |AY | > m

2n , so define BY to consist of the smallest ⌊m2n⌋ elements of AY .
Then, for every set S ⊂ BY with |S| = ⌊εm⌋, associate a word f(y, S) by replacing
y(s) = a by atva for each s ∈ S. Then f(y, S) ∈ L(X), since all adjacencies are
either part of atva or y, both of which are in L(X).

We claim that all such words are distinct. To see this, consider any unequal pairs
(y, S) and (y′, S′). Take the minimal i for which y(i) ̸= y′(i) or χS(i) ̸= χS′(i).
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Since y(j) = y′(j) and χS(j) = χS′(j) for j < i, the replacements made in y and y′

to the left of the ith location are identical, resulting in a word z. Then the letters
immediately after z in f(y, S) and f(y′, S′) are y(i) and y′(i) respectively, and so
if y(i) ̸= y′(i) then f(y, S) ̸= f(y′, S′).

Thus we can assume y(i) = y′(i) and χS(i) ̸= χS′(i), and without loss, we
assume that i ∈ S and i /∈ S′, meaning that y(i) = y′(i) = a. Since i ∈ S, f(y, S)
begins with zatva. Define j = min{s ∈ S′ : s > i}. If j > i+ |t|, then the |t|+ 1
letters after y′(i) are unchanged in the creation of f(y′, S′), meaning that f(y′, S′)
begins with zy′(i + 1) . . . y′(i + |t| + 1). Since y′ contained no w and at ends with
w, zat ̸= zy′(i+ 1) . . . y′(i+ |t|+ 1), and so again f(y, S) ̸= f(y′, S′).

The only remaining case is i < j ≤ i+ |t|. This means that f(y′, S′) begins with
zaratva for some word r with 0 ≤ |r| ≤ |t|. Then the occurrence of w at the end of
at ends with f(y′, S′)(p) for some p ∈ [|z|+2+|t|, |z|+1+2|t|]. If f(y, S) = f(y′, S′),
then f(y, S) would have an occurrence of w at the same location. However,

|z|+ 1 + |t| < p ≤ |z|+ 2 + 2|t| < |z|+ |t|+ n+ k < |z|+ |t|+ |v|,

and so f(y, S)(p) lies within the va following zat at the beginning of f(y, S). But
atva contains only one occurrence of w, ending at the final letter of t, a contradic-
tion. Therefore, in all cases, f(y, S) ̸= f(y′, S′).

Every f(y, S) has length m + ⌊εm⌋(1 + |t| + |v|) < m +mε(3n + 4k). Putting
this together yields

|Lm(1+ε(3n+4k))(X)| ≥ |Zm| ·
(
⌊m2n⌋
⌊εm⌋

)
.

Taking logarithms dividing by m, and letting m tend to infinity, to get

htop(X)(1 + ε(3n+ 4k)) ≥ htop(Y )− ε ln(2εn).

Choose ε = (2n)−1e−2(3n+4k)htop(X) < 1
2n . Then ln(2εn) = −2(3n + 4k)htop(X),

yielding

htop(X) + ε(3n+ 4k)htop(X) ≥ htop(Y ) + 2ε(3n+ 4k)htop(X).

Thus it follows that

htop(X)− htop(Y ) ≥ ε(3n+ 4k)htop(X).

Finally,

htop(X)− htop(Y ) ≥ ε(3n+ 4k)htop(X)

= htop(X)(3n+ 4k)(2n)−1e−2(3n+4k)htop(X) > htop(X)e−2(3n+4k)htop(X). □

Corollary 3.6. If X is an infinite transitive subshift with alphabet of size a and
SFT cover {Xn}n∈N, then for any n and k for which Xn ⊋ Xn+k−1, we have that

htop(Xn)− htop(Xn+k−1) > (ln 2)s−1e−3(3s+4k) ln a,

where s = |Ln(Xn)|.

Proof. Take any suchX, n, k. SinceX is transitive, eachXn is also transitive. Also,
there exists w ∈ Ln+k−1(Xn)\Ln+k−1(Xn+k−1). By recoding, we may assume that
Xn is a nearest-neighbor SFT and that w is of length k.
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As a nearest-neighbor SFT, Xn has alphabet Ln(Xn) of size s, and Xn+k−1 is
contained in the SFT Y obtained by removing the k-letter word w from Lk(X).
Therefore by Theorem 3.5,

htop(Xn)− htop(Xn+k−1) ≥ htop(Xn)− htop(Y )

> htop(Xn)e
−2(3s+4k)htop(Xn).

It is clear that htop(Xn) ≤ ln a. Finally, since Xn is a transitive nearest-neighbor
SFT with s letters, it has a cycle C of minimum length, which must have length at
most s, beginning and ending at some letter L. Since Xn is infinite, there must be
another cycle C ′ beginning and ending at L, which we can assume to not repeat
a letter, and so which also has length at most s. All concatenations of C and C ′

yield points of Xn, and so htop(Xn) ≥ ln 2
s . Therefore,

htop(Xn)e
−2(3s+4k)htop(Xn) ≥ (ln 2)s−1e−3(3s+4k) ln a,

completing the proof. □

It follows immediately from this corollary that the classes of language stable and
entropy stable are the same.

Theorem 3.7. A transitive subshift is language stable if and only if it is entropy
stable.

4. Periodic point stability

4.1. Period stable shifts and characteristic measures. For a shift (X,σ) and
p ∈ N, let Pp = Pp(X) denote the set of periodic points of minimal period p.

Definition 4.1. The shift (X,σ) with SFT cover {Xn}n∈N is period stable if for
all m ∈ N, there exist n, p ∈ N such that Pp(Xn) = Pp(Xn+m).

Note that the assumption that this holds for all m ∈ N is equivalent to the
(seemingly weaker) assumption that this condition holds for infinitely many m ∈ N.
We note that the property of being period stable is preserved under topological
conjugacies.

Lemma 4.2. If X ⊆ AZ is a subshift that is period stable and Y ⊆ BZ is a subshift
that is topologically conjugate to X, then Y is period stable.

Proof. Let φ : X → Y be a topological conjugacy between X and Y . Let R be a
range that is common to both φ and φ−1. For words w ∈ Ln(X) with n > 2R, we
abuse notation by writing φ(w) for the word of length n−2R obtained by applying
the range R block map implementing φ to w, and similarly we do this for φ−1(w)
when w ∈ Ln(Y ). We also extend the domain of φ from X to Xn, for all n > 2R,
by defining it to be the function determined by this range R block code on the
larger domain. Similarly for φ−1 and Yn. Note that φ−1 ◦ φ is defined on Xn only
when n > 4R but, when it is defined, it is the identity map (defined by the identity
block code of range 2R). This implies, when n > 4R, that the shifts Xn and φ(Xn)
are topologically conjugate and φ is a conjugacy. In particular, when n > 4R, we
have φ(Pp(Xn)) = Pp(φ(Xn)) for any p.

Let {Xn}∞n=1 be the SFT cover of X and let {Yn}∞n=1 be the SFT cover of Y .
Fix m ∈ N and choose n, p ∈ N such that Pp(Xn) = Pp(Xn+(4R+m)). Without
loss of generality, we can assume that n > 4R (otherwise we can take n′, p′ such
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that Pp′(Xn′) = Pp′(Xn′+8R+m) and set n = n′ + 4R and p = p′). Notice that for
any w ∈ Ln+4R(X), we have φ(w) ∈ Ln+2R(Y ). Therefore φ(Xn+4R) ⊆ Yn+2R.
Similarly, φ−1(Yn+2R) ⊆ Xn and so φ(φ−1(Yn+2R)) ⊆ φ(Xn). Since n > 2R,
φ(φ−1(Yn+2R)) = Yn+2R and so Yn+2R ⊆ φ(Xn). In other words,

φ(Xn+4R) ⊆ Yn+2R ⊆ φ(Xn).

Similarly, we have

φ(Xn+4R+m) ⊆ Yn+2R+m ⊆ φ(Xn+m).

Since Pp(Xn) = Pp(Xn+4R+m), we have that Pp(Xn) = Pp(Xn+k) for all 0 ≤ k ≤
4R+m. In particular,

Pp(Xn) = Pp(Xn+4R) = Pp(Xn+m) = Pp(Xn+4R+m).

Since Pp(φ(Xn+4R)) = φ(Pp(Xn+4R)) = φ(Pp(Xn)) = Pp(φ(Xn)), we have that

Pp(Yn+2R) = φ(Pp(Xn)).

Similarly, we have

Pp(Yn+2R+m) = φ(Pp(Xn+m)).

So Pp(Yn+2R) = Pp(Yn+2R+m). As this holds for any m ≥ 1, the subshift Y is
period stable. □

We next check that this condition suffices for producing a characteristic measure.

Theorem 4.3. Every period stable subshift has a characteristic measure.

Proof. Assume that (X,σ) is a period stable shift and let {Xn}n∈N be its SFT
cover. For each m ∈ N, choose nm, pm ∈ N such that Ppm(Xnm) = Ppm(Xnm+m).
For ease of notation, we write Pm := Ppm(Xnm

) = Ppm(Xnm+m) and define

µm :=
1

|Pm|
·
∑
x∈Pm

δx,

where δx denotes the Dirac measure at x. Then the measure µm is an invariant
measure supported on Xnm+m, which is a subshift of Xnm . Let µ be a weak*
limit point of the sequence {µm}∞m=1. We claim that µ is a characteristic measure
supported on X.

Note that for any w /∈ L(X) and any m > |w|, we have µm([w]) = 0, and
therefore we also have that µ([w]) = 0. It follows that the support of µ does
not intersect [w] for any forbidden w ∈ F(X). In particular, the support of µ is
contained in X.

Let φ ∈ Aut(X) be given and choose R ∈ N such that φ ∈ AutR(X). Let Φ
and Φ−1 be range R block codes that implement φ and φ−1, respectively. For any
m ≥ 4R, note that nm +m ≥ 4R+ 1 and so Φ−1 ◦Φ implements the identity map
on Xnm+m as a range 2R block code. Therefore

(φ−1 ◦ φ) : Xnm+m → Xnm+m−4R

is the identity map. It follows that Xnm+m is topologically conjugate to φ(Xnm+m)
with the conjugacies implemented by φ and φ−1. In generalXnm+m and φ(Xnm+m)
are not equal. However, both Xnm+m and φ(Xnm+m) are subshifts of Xnm , since
φ(Xnm+m) ⊆ Xnm+m−2R ⊆ Xnm (we have used the fact that m > 2R). There-
fore, Ppm(φ(Xnm+m)) ⊆ Ppm(Xnm

). Since Xnm+m and φ(Xnm+m) are topologi-
cally conjugate, we have |Ppm(Xnm+m)| = |Ppm(φ(Xnm+m))|. It therefore follows
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from our assumption, that Ppm(Xnm
) = Ppm(Xnm+m), that Ppm(φ(Xnm+m)) =

Ppm(Xnm+m). In particular, φ acts like a permutation on Pm and so φ∗µm = µm.
Since this holds for any m ≥ 4R + 1, it follows that φ∗µ = µ. Since φ ∈ Aut(X)
is arbitrary, this holds for all elements of Aut(X) and thus µ is a characteristic
measure. □

We devote the remainder of this section to an example showing that this theorem
covers more than the subshifts that are period stable for simple reasons, such as
those with a periodic point or those that are language stable. A priori, we do not
know if the subshift we construct has non-trivial automorphisms and a non-trivial
automorphism group, and so in Section 4.3 we indicate how to obtain such a system.

4.2. Construction of a period stable subshift with no periodic points that
is not language stable. Let Y ⊆ {0, 1}Z be a minimal Sturmian shift satisfying
the following two conditions:

• 11 is forbidden in Y ;
• 000 is forbidden in Y .

Sturmians satisfying these two conditions are easy to construct, for instance by
taking the cutting sequence [4, Chapter 6] of a line with irrational slope α ∈ (1/2, 1).
Let y ∈ Y be a fixed element of Y with y(1) = 0. We use y to construct a subshift
X ⊆ {0, 1}Z that is period stable but not language stable and has no periodic
points. To define X, we specify its set F of forbidden words, setting F to be the
union of four sets of words,

F = W1 ∪W11
2 ∪W00

2 ∪W000
2 ,

and we specify these words in the construction.
We refer to the elements of W1 as the Type I forbidden words and to the elements

of W11
2 ∪W00

2 ∪W000
2 as the Type II forbidden words, reflecting the different roles

the words play in our construction. Roughly speaking, the Type I words ensure
X is not language stable and the Type II words ensure X does not contain any
periodic points.

4.2.1. Some auxiliary results. Before constructing the forbidden words F that de-
fine the subshift, we introduce some lemmas that are used to control the entropy.
For a topologically transitive shift Z of finite type and for a word w ∈ L(Z), let
Z(w) denote the subshift obtained by setting

Z(w) := {z ∈ Z : σi(z) /∈ [w] for all i ∈ Z}.

The first result we use is due to Lind.

Lemma 4.4 (Lind [8, Theorem 3]). Let Z be a topologically transitive subshift of
finite type and let ε > 0 be given. There exists k ∈ N such that for any word
w ∈ L(Z) with |w| ≥ k, we have |htop(Z)− htop(Z(w))| < ε.

Lind’s result holds in greater generality but we could not find a specific reference
in the literature. So, we state and prove the generalization for subshifts that are
not necessarily topologically transitive.

Lemma 4.5. Let Y be a subshift of finite type and let ε > 0 be given. There
exists k ∈ N such that for any word w ∈ L(Y ) with |w| ≥ k, we have |htop(Y ) −
htop(Y (w))| < ε.
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Proof. Since Y is a subshift of finite type, there is a topologically transitive subshift
of finite type, Z, contained in Y , that satisfies htop(Z) = htop(Y ). (To see this,
one can apply, for example, [3, Lemma 4.7] in the special case that a is the size
of the language of Y , f is the length of the longest forbidden word among a finite
set of forbidden words used to define Y , X := Y , and φ is the identity map.) By
Lemma 4.4, we can find k ∈ N such that for any word w ∈ L(Z) with |w| ≥ k, we
have |htop(Z)−htop(Z(w))| < ε for any w ∈ L(Z) with |w| ≥ k. By construction of
Z, this implies that |htop(Y )−htop(Z(w))| < ε. Since Z(w) ⊆ Y (w), it follows that
|htop(Y ) − htop(Z(w))| < ε. Finally note that if w ∈ L(Y ) \ L(Z) then Z = Z(w)
and since Z(w) ⊆ Y (w) we have |htop(Y )− htop(Z(w))| = 0. □

4.2.2. The set of Type I forbidden words W1. For each integer n > 0, define

un := 111y(1)y(2)y(3) . . . y(4n)111

where y(i) is the ith coordinate of the element y ∈ Y that we fixed at the beginning
of this construction. We index the letters of un starting from 1, writing

un(i) =

 1 if 1 ≤ i ≤ 3;
y(i− 3) if 4 ≤ i ≤ 4n+ 3;

1 if 4n+ 4 ≤ i ≤ 4n+ 6.

We set

W1 = {un : n ∈ N}.
Note that no two elements of W1 have the same lengths and the lengths of the
elements of W1 are the numbers of the form 4n+6. In particular, the lengths form
a syndetic subset of N. Further note that the word y(1)y(2)y(3) . . . y(4n) does not
have 11 as a subword, because 11 is a forbidden word in the shift Y . Therefore, the
only places that 11 occurs as a subword of un are:

(1) within its prefix 111 (the word un(1)un(2)un(3));
(2) within its suffix 111 (the word un(4n+ 4)un(4n+ 5)un(4n+ 6));
(3) if un(4n+ 3) = 1, then within its suffix 1111 (the word un(4n+ 3)un(4n+

4)un(4n+ 5)un(4n+ 6)).

Recall that we chose y ∈ Y such that y(1) = 0, and it follows that un begins with
the prefix 1110 for all n. It ends with the suffix either 0111 or 01111 depending on
whether un(4n+ 3) is 0 or 1.

4.2.3. The set of Type II words in W11
2 . Consider the shift

X1 = {x ∈ {0, 1}Z : σi(x) /∈ [un] for all i ∈ Z and n ∈ N}.

Let H1 be the subshift of finite type whose only forbidden word is 111. Note that
if h ∈ H1, then h does not contain 111 as a subword. In particular, since un itself
contains 111 as a subword, h does not contain un as a subword for any n ∈ N. It
follows that H1 ⊆ X1 and so

htop(X1) ≥ htop(H1) > log2(1.839).

Hence the topological entropy of X1 is positive. Furthermore, X1 is topologically
mixing: if w1, w2 ∈ L(X1) then ∞0w10

kw20
∞ ∈ X1 for any k ≥ 3 (since un does

not contain 000 as a subword for any n).
We inductively construct the set W11

2 . Our goal is to forbid additional words
from the language of X1 that eliminate all periodic points that contain 11 as a
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subword, while ensuring that the resulting shift has entropy close to that of X1 and
such that the newly forbidden words do not occur as subwords of y.

Let P0 ⊆ X1 be the collection of all periodic points that contain 11 as a subword.
Among the elements of P0, choose a periodic point p0 that has the least possible
minimal period. Find a word v0 ∈ L(X1) such that v0 has 11 as a prefix and such
that p0 = . . . v0v0v0v0v0 . . . is (a shift of) the bi-infinite self-concatenation of v0.

Next we choose an integer k0 > 0 sufficiently large such that vk00 does not occur
as a subword of y; we note we can always find such a word, as y ∈ Y can not
contain arbitrarily long subwords that are periodic with a fixed period because Y
is a Sturmian shift. Define the word z0 := v100k00 11. Since v0 begins with prefix 11,
the word z0 is periodic with period |v0| and has 11 as both a prefix and a suffix.
Define

P1 := {p ∈ P0 : z0 is not a subword of p}.
We continue this procedure inductively. Assume that we have constructed words
z0, . . . , zr such that:

(1) each zi is periodic;
(2) the lengths of the zi are increasing ;
(3) each zi has 11 as both a prefix and a suffix;
(4) there is a word, vi, that has 11 as a prefix, and an integer ki such that

zi = v100kii 11 where ki is sufficiently large that vkii does not occur as a
subword of y.

Suppose further that we have defined P0 ⊃ P1 ⊃ · · · ⊃ Pr ⊃ Pr+1 such that for
each i = 0, 1, . . . , r,

Pi+1 = {p ∈ Pi : zi is not a subword of p}
and the word . . . zizizizizi . . . is an element of Pi of minimum possible period,
among all elements of Pi. Among the elements of Pr+1 choose a periodic point
pr+1 that has the smallest possible minimal period. Find a word vr+1 ∈ L(X1) such
that vr+1 has 11 as a prefix and such that pr+1 = . . . vr+1vr+1vr+1vr+1vr+1 . . . is
(a shift of) the bi-infinite self-concatenation of vr+1. Choose an integer kr+1 > 0

sufficiently large such that v
kr+1

r+1 does not occur as a subword of y and is also such

that |vr+1| · kr+1 > |zr|. Define zr+1 := v
100kr+1

r+1 11. Since vr+1 begins with prefix
11, the word zr+1 is periodic and has 11 as both a prefix and a suffix. Define

Pr+2 := {p ∈ Pr+1 : zr+1 is not a subword of p}.
Inductively, this defines Pi for all i ≥ 0. We define

(14) W11
2 := {zi : i ∈ N}

4.2.4. The set of Type II words in W00
2 . Consider the shift

X2 = {x ∈ X1 : σ
i(x) /∈ [z] for all i ∈ Z and z ∈ W11

2 }.
Let H2 be the subshift of finite type whose only forbidden word is 11. Note that
H2 ⊂ H1 and that H2 ⊆ X2 because every word in W11

2 contains 11 as a subword.
Consequently,

htop(X2) ≥ htop(H2) > log2(1.618).

Hence the topological entropy of X2 is positive. Moreover, X2 is topologically mix-
ing: if w1, w2 ∈ L(X2), then

∞0w10
kw20

∞ ∈ X2 as long as k ≥ max{|w1|, |w2|, 3}
(analogous to the argument for mixing on words in W11

2 , the shift X2 contains no
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element of W1 and it contains no element of W11
2 as a subword because all such

words begin and end with 11 and contain at least 100 copies of their period).
We inductively construct the set W00

2 . Our goal is to forbid additional words
from the language of X2 that eliminate all periodic points that contain 00 but do
not contain 000 as a subword.

Let Q0 ⊆ X2 be the collection of all periodic points that contain 00 as a subword
but do not contain 000 as a subword. These periodic points do not contain 11 as
a subword because X2 ⊆ X1 was constructed to remove all periodic points from X1

that contain 11 as a subword. We proceed as in the construction for words in W11
2 .

Among the elements of Q0, choose a periodic point q0 that has the least possible
minimal period. Find a word w0 ∈ L(X2) such that w0 has 00 as a prefix and
such that q0 = . . . w0w0w0w0w0 . . . is (a shift of) the bi-infinite concatenation of

w0. Choose an integer ℓ0 > 0 sufficiently large such that wℓ00 does not occur as a

subword of y. Define the word α0 := w100ℓ0
0 00. Since w0 begins with prefix 00, the

word α0 is periodic and has 00 as both a prefix and a suffix. Define

Q1 := {q ∈ Q0 : α0 is not a subword of q}.

We continue this procedure inductively. Assume we have constructed words α0, . . . , αr
such that

(1) each αi is periodic; the lengths of the αi are increasing;
(2) each αi has 00 as both a prefix and a suffix;

(3) there is a word wi and an integer ℓi such that αi = w100ℓi
i 00 and wℓii is not

a subword of y.

We further suppose that we have defined Q0 ⊃ Q1 ⊃ · · · ⊃ Qr ⊃ Qr+1 such that
for each i = 0, 1, . . . , r,

Qi+1 = {q ∈ Qi : αi is not a subword of q}

and the word . . . αiαiαiαiαi . . . is an element of Qi of minimum possible period,
among all elements of Qi. Among the elements of Qr+1, we choose a periodic point
qr+1 that has the smallest possible minimal period. Find a word wr+1 ∈ L(X2) such
that wr+1 has 00 as a prefix and such that qr+1 = . . . wr+1wr+1wr+1wr+1wr+1 . . .
is (a shift of) the bi-infinite self-concatenation of wr+1. Choose an integer ℓr+1 > 0

sufficiently large that w
ℓr+1

r+1 does not occur as a subword of y and is also such that

|wr+1| · ℓr+1 > |αr|. Define αr+1 := w
100ℓr+1

r+1 00. Since wr+1 begins with prefix 00,
the word αr+1 is periodic and has 00 as both a prefix and a suffix. Define

Qr+2 := {q ∈ Qr+1 : αr+1 is not a subword of q}.

Inductively, this defines Qi for all i ≥ 0. We define

(15) W00
2 := {αi : i ∈ N}.

4.2.5. The set of Type II words in W000
2 . Consider the shift

X3 = {x ∈ X2 : σ
i(x) /∈ [α] for all i ∈ Z and α ∈ W00

2 }.

Let H3 be the subshift of finite type whose only forbidden words are 11 and 1001.
Note that if h ∈ H3 then h contains no word in W1 ∪W11

2 as a subword (since all
such words contain 11 as a subword and h does not) and also contains no word in
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W00
2 as a subword (since all such words contain 1001 as a subword and h does not).

Therefore H3 ⊆ X3 and

htop(X3) ≥ htop(H3) > log2(1.512).

In particular, the topological entropy of X3 is positive. Moreover X3 is topo-
logically mixing: for any w1, w2 ∈ L(X3) then ∞0w10

kw20
∞ ∈ X2 so long as

k ≥ max{|w1|, |w2|, 3}, and it is also easy to check that H3 is also topologically
mixing.

Since X3 contains a positive entropy subshift of finite type, it has infinitely
many periodic points. By construction of the sets W11

2 and W00
2 , none of these

periodic points contains 11 as a subword and the only periodic point that does not
contain 000 as a subword is the point (01)∞. As before, we inductively construct
the set W000

2 with the goal of eliminating all of the remaining periodic points.
However, the words in W000

2 have to be chosen more delicately than before to
ensure that we obtain a nonempty period stable but not language stable shift.
Setting W000

2 = {β0, β1, . . . }, our goal is to construct the words in W000
2 such that

for any fixed n, the shift

X3(n) := {x ∈ X3 : σ
i(x) /∈ [βj ] for all i ∈ Z and 0 ≤ j ≤ n}

has entropy bounded below by 1
2htop(H3), and such that the words are chosen such

that the shift

X4 :=

∞⋂
n=0

X3(n)

is period stable but not language stable. Largely this is accomplished by defining
the words βi to be long periodic words, with carefully chosen lengths, that eliminate
the remaining periodic points.

Again we define words β0, β1, . . . inductively, and for each t ≥ 0 we then set

H3(t) = {x ∈ H3 : σ
i(x) /∈ [βj ] for all i ∈ Z and 0 ≤ j ≤ t}.

Note that

htop(X (t)) ≥ htop(H(t)) for all t ≥ 0.

Let R0 be the set of all periodic points in X3. Define

β0 = (01)100k = 01010101 . . . 0101

where k is sufficiently large such that

(1) the word (01)k does not occur as a subword of y;
(2) htop(H3(0)) > (1− 1/4) · htop(H3) (by Lemma 4.5, this is possible).

Let R1 be the set of all periodic points in X3(0). Note that none of the points in R1

contain either 11 or 1001 as a subword, and all of them contain 000 as a subword
(the only periodic point in X3 that does not contain 000 as a subword is the point
. . . 0101010101 . . . which is forbidden by the word β0 in X3(0)). Among the elements
of R1, choose a periodic point r1 that has the smallest possible minimal period.
Choose a word x1 that has 000 as a prefix and is such that r1 = . . . x1x1x1x1x1 . . .
is (a shift of) the bi-infinite concatenation of r1. Choosing an integer s1 sufficiently
large such that when we take β1 := x100s11 , we then have that

(1) xs11 does not occur as a subword of y;
(2) htop(H3(1)) > (1− 1/4− 1/16) · htop(H3) (by Lemma 4.5, this is possible).
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Let R2 be the set of all periodic points in X3(1). We continue inductively and
assume that we have defined words β0, . . . , βt that are each periodic, have increasing
lengths, are such that βi = x100sii for some word xi that has 000 as a prefix and si
large enough that xsii does not occur as a subword of y (for all 1 ≤ i ≤ t), and are
such that for all i = 1, . . . , t we have

htop(H3(i)) >

1−
i∑

j=0

1

4j+1

 · htop(H3).

Let Rt+1 be the set of periodic points in X3(t). Note that Rt+1 is nonempty be-
cause X3(t) contains the positive entropy subshift of finite type H3(t). Among
the points in Rt+1, let rt+1 be a periodic point with the smallest possible mini-
mal period. Find a word xt+1 that has 000 as a prefix and is such that rt+1 =
. . . xt+1xt+1xt+1xt+1xt+1 . . . is (a shift of) the bi-infinite concatenation of rt+1.

Choose an integer st+1 sufficiently large such that if βt+1 := x
100st+1

t+1 , then βt+1 is
longer than βt and

(1) x
st+1

t+1 does not occur as a subword of y;

(2) htop(H3(t+ 1)) >
(
1−

∑t+1
j=0

1
4j+1

)
· htop(H3) (by Lemma 4.5, this is pos-

sible).

We further require that st+1 has an additional property that allows us to show
that the shift we build is period stable. Let (Yn(t))n∈N be the SFT cover of X3(t).
For any fixed n ∈ N, the shift Yn(t) contains many periodic points that are not in
X3(t). However, for any periodic point p, either p ∈ Rt+1 or there exists n ∈ N
such that p /∈ Yn(t). Since rt+1 has the smallest possible minimal period among all
periodic points in Rt+1, there exists Nt+1 such that for all n ≥ Nt+1, all periodic
points in Yn(t) that do not lie in Rt+1 have minimal period strictly larger than
the minimal period of rt+1. When choosing the integer st+1, we require that the

length of βt+1 = x
100st+1

t+1 is longer than Nt+1 + t + 1. Define γt+1 to be βt+1

with its first letter removed, and ζt+1 to be βt+1 with its last letter removed. If
(Yn(t + 1))n∈N is the SFT cover of X3(t + 1), we claim that the periodic points
of minimal possible period in YNt+1(t+ 1) coincide with those of minimal possible
period in YNt+1+t(t+1). To see this, note that any periodic point in YNt+1(t+1) of
minimal possible period that does not contain βt+1 as a subword, is in YNt+1+t(t+1).
If we can show that both γt+1 and ζt+1 are in L(YNt+1+t(t+1)), then any periodic
point YNt

(t + 1) that does contain βt+1 as a subword is also in YNt+1+t(t + 1)
because any forbidden word that occurs it must contain βt+1 as a subword, but
|βt+1| > Nt+1+ t. To see that both γt+1 and ζt+1 are in L(YNt+1+t(t+1)), let A be
a semi-infinite ray in y that emanates to the left and ends with a 1, and let Ω be a
semi-infinite ray in y that emanates to the right and starts with a y (where y ∈ Y
is the element of the Sturmian shift Y we fixed at the start of the construction).
Notice that Aγt+1Ω ∈ YNt+1+t(t + 1) (and similarly Aγt+1Ω ∈ YNt+1+t(t + 1))
because it does not contain 11 as a subword, it contains 1001 as a subword at most
twice (overlapping A and γt+1 or overlapping γt+1 and Ω), and all occurrences
of 000 as a subword occur within γt+1, so it does not contain any of the already
forbidden words as a subword. Finally, we require st+1 be sufficiently large such
that |βt+1| > 2|βt|.
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Inductively this procedure defines the words βt for all t ≥ 1. We define

(16) X4 :=

∞⋂
t=1

X3(t)

and claim that X4 is period stable, is not language stable, and does not have any
periodic points.

4.2.6. Properties of X4. We check the properties of the shift X4 defined in (16),
showing that it is a nonempty, period stable but not language stable shift that has
no periodic points. It then follows from period stability that X4 has a characteristic
measure, and the existence of this measure does not follow either from other criteria,
such as language stability or existence of a periodic point. Moreover, as X4 has no
periodic point, the characteristic measure we produce is non-atomic.

Lemma 4.6. X4 is nonempty.

Proof. It follows from the definition (16) of X4 that this shift is the intersection of
the nested sequence of shifts X3(0) ⊃ X3(1) ⊃ X3(2) ⊃ . . . . Furthermore, it follows
from the construction that

htop(X3(t)) ≥ htop(H3(t)) >

1−
t∑

j=0

1

4j+1

 · htop(H3) >
2

3
· log2(1.512).

By upper semi-continuity of entropy, this means htop(X4) ≥ 2
3 · log2(1.512) > 0,

and in particular X4 is nonempty. □

Lemma 4.7. X4 has no periodic points.

Proof. This is immediate from the construction of the setsW1,W11
2 ,W00

2 , andW000
2

which were built specifically to add forbidden words that eliminated all periodic
points. □

To show that X4 is not language stable, we introduce some notation. For any
m ∈ Z, let Lm ∈ {0, 1}{n∈Z : n≤m} be the {0, 1}-valued coloring of the left-infinite
ray {n ∈ Z : n ≤ m} given by

Lm(n) := y(1 + n−m).

In other words, Lm is the left-infinite ray obtained by restricting y to the set
{n ∈ Z : n ≤ 1} and then shifting the ray such that its rightmost edge is at m
instead of 1. Similarly, let Rm ∈ {0, 1}{n∈Z : n≥m} be the {0, 1}-valued coloring of
the right-infinite ray {n ∈ Z : n ≥ m} given by

Rm(n) := y(1 + n−m)

We have that Lm(m) = Rm(m) = 0, because y(1) = 0.
For w ∈ {0, 1}∗, we index the letters of w starting at 1, meaning we consider

w to be a function w : {1, 2, . . . , |w|} → {0, 1}. Set LwR : Z → {0, 1} to be the
function

LwR(i) =

 L0(i) if i ≤ 0;
w(i) if 1 ≤ i ≤ |w|;

R|w|+1(i) if |w|+ 1 ≤ i.

In other words, LwR is the {0, 1}-valued coloring of Z obtained by concatenating
the left-infinite ray L0 with w and R|w|+1. By construction, LwR(0) = LwR(|w|+
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1) = 0 and the restriction of LwR to the set {1, 2, . . . , |w|} is w. For clarity, we
introduce terminology to reflect how a word occurs as a subword of a concaentation
of words. If u is a subword of LwR that occurs at coordinates entirely within the
set {i : i ≤ 0}, we say u occurs in L. If u occurs at coordinates entirely in the set
{i : i ≥ |w|+1}, we say u occurs in R. If u occurs at coordinates entirely in the set
{1, 2, . . . , |w|}, we say u occurs in w.

Lemma 4.8. X4 is not language stable.

As a remark, this is the point at which we use the words defined in W1.

Proof. Letting (Sn)n∈N be the SFT cover of X4, we show that the set

{n ∈ N : Sn ̸= Sn+1}

is syndetic in N.
Fix n ∈ N. The word un ∈ W1 is forbidden in X4. Let an be the word un with

its rightmost letter removed (thus |an| = |un| − 1). Let bn be the word un with
its leftmost letter removed (again |bn| = |un| − 1). We show that an, bn ∈ L(X4).
It follows from this that un ∈ L(S|an|) = L(S|un|−1) but un /∈ L(S|un|); hence
S|un|−1 ̸= S|un|. Since {|un| : n ∈ N} is a syndetic subset of N, it follows that X4 is
not language stable. Thus we are left with showing that an, bn ∈ L(X4).

To show that an ∈ L(X4), we prove that LanR ∈ X4 (a similar argument shows
that LbnR ∈ X4 and so we also have that bn ∈ L(X4)). To check that LanR ∈ X4,
we need to check that no element of W1 ∪W11

2 ∪W000
2 ∪W00

2 occurs as a subword
of LanR.

Claim 1: If w ∈ W1, then w does not occur as a subword of LanR. For contra-
diction, suppose w occurs as a subword of LanR. Since w ∈ W1, this word has
111 as both a prefix and a suffix. Since 11 does not occur as a subword of y,
we know 11 does not occur in L and also does not occur in R. By construction
(LanR)(0) = (LanR)(|w| + 1) = 0, and so any location where 11 occurs in LanR
must be entirely within an (in other words it cannot partially overlap L and an or
an and R). Similarly, the suffix 11 of w must occur in an, meaning w is a subword
of an. Therefore |w| ≤ |an|. But w = um for some m ∈ N and |an| = |un| − 1, and
so m < n. That means that |w| ≤ |un| − 4 = |an| − 3. But 11 only occurs as a
subword of un in the positions (1), (2), and (3) in the construction in Section 4.2.2.
Because |w| ≥ 6, the prefix 11 of w must occur within the prefix 111 of an and the
suffix 11 of w must occur within the suffix 11 (if un ends with 0111) or the suffix
111 (if un ends with 01111) of an. Therefore |w| ≥ |an| − 2; a contradiction.

Claim 2: If w ∈ W11
2 , then w does not occur in LanR. As in the proof of Claim

1, since w begins and ends with 11, any occurrence of w in LanR must be within
an. Therefore, since an is a subword of un, the word w must occur as a subword of
un. Recall that the words in W11

2 are periodic, begin with the word 11, and repeat
their period at least 100 times. Therefore, if w is a subword of un, there must be
at least 100 separate locations in un where 11 occurs as a subword. But the word
11 only occurs as a subword of un in positions (1), (2), and (3) in the construction
in Section 4.2.2. Therefore w cannot occur as a subword of un and so also can not
occur as a subword of LanR.
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Claim 3: If w ∈ W00
2 , then w does not occur in LanR. Again we proceed by

contradiction and assume that w does occur in LanR. Recall from the construction
of w in Section 4.2.4 that there is a word αi starting with 00 and a parameter
ℓi ∈ N sufficiently large such that αℓii does not occur as a subword of y. Then

w = α100ℓi
i 00. Since αℓii is not a subword of y, it is also not a subword of L or

R. Thus if w occurs in LanR the longest prefix of w that appears in L has length
less than |w|/100 and the longest suffix of w that appears in R has length less than
|w|/100. Therefore, a subword of w of length at least 98|w|/100 occurs as a subword
of an. As an is a subword of un, a subword of w of length at least 98|w|/100 appears
as a subword of un. Recall that un has a prefix 111 and a suffix 111, but if both of
these are removed from un, the remaining subword is a subword of y. Since there is
a subword of w of length at least 98|w|/100 that occurs as a subword of un, then a
subword of w of length at least 92|w|/100 appears as a subword of y. In particular,

this means αℓii appears as a subword of y; a contradiction.

Claim 4: If w ∈ W000
2 , then w does not occur in LanR. The word 000 does not

occur as a subword of y, and so it is not a subword of either L or R. Since an begins
and ends with the word 11, there is no occurrence of 000 in LanR that partially
overlaps L and an or an and R. Finally, 000 does not occur as a subword of an
because an is a subword of un and un decomposes as un = 111γ111 where γ is a
subword of y. Therefore 000 does not occur as a subword of LanR. Thus if 000 is a
subword of w, then w cannot be a subword of LanR. The only word in W000

2 that
does not contain 000 as a subword is the word β0 = (01)100k, where k ∈ N is so
large that (01)k does not occur as a subword of y. Analogous to the argument for
the words in W00

2 , if β0 occurred in LanR, then a subword of β0 of length at least
98|β0|/100 would have to occur as a subword of un and hence a subword of β0 of
length at least 92|β0|/100 would be a subword of y. In particular, (01)k would be
a subword of y; a contradiction.

As these four cases cover all of the elements W1 ∪ W11
2 ∪ W000

2 ∪ W00
2 , this

completes the proof. □

Lemma 4.9. X4 is period stable.

Proof. Let {Xn}∞n=1 be the SFT cover of X4. Recall that

X4 =

∞⋂
t=0

X3(t)

where X3(0) ⊃ X3(1) ⊃ · · · ⊃ X3(t) ⊃ . . . . In the notation of Section 4.2.5, recall
that for any t, (Yn(t))n∈N is the SFT cover of X3(t) and that Nt is a parameter
constructed such that the collection of periodic points of minimal period in YNt

(t)
concides with those of minimal period in YNt+t(t). Further, for any t, k ∈ N, the
shift X3(t+ k) is obtained from X3(t) by forbidding the words βt+1, βt+2, . . . , βt+k
and by construction, |βt+j | > 2j |βt| for all j > 0. For each t ∈ N, let Mt be the
minimal period of any periodic point in YNt

. Note that Mt is also the minimal
period of any periodic point in X3(t − 1) and that collection of periodic points
of period Mt in X3(t) is strictly smaller than that of X3(t − 1) (because βt is
specifically constructed to eliminate one of these periodic points when defining
X3(t)). Therefore, the sequence {Mt}∞t=1 is non-decreasing and tends to infinity.
For any value of t with Mt+1 > Mt, all periodic points of period Mt in X3(t − 1)
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contain βt as a subword. Let {tr}∞r=1 be a subsequence for which Mtr < Mtr+1 for
all r ≥ 1. Then for any r, we know

(1) the minimum possible period of any periodic point in X3(tr − 1) is Mtr ;
(2) all periodic points of period Mtr in X3(tr − 1) contain βtr as a subword;
(3) all periodic points of period Mtr in X3(tr − 1) are in YNtr

(tr) and in
YNtr+tr

(tr);
(4) all periodic points in X3(tr) have period strictly larger than Mtr ;
(5) |βtr+j | > 2j |βtr | for all j > 0.

Let p be a periodic point of period Mtr in X3(tr − 1). While p must contain βtr
as a subword, we claim that it does not contain βtr+j as a subword for any j > 0.
Since |βtr | > Ntr + tr, it follows from this and the fact that p ∈ YNtr+tr

(tr) that
p ∈ XNtr

and p ∈ XNtr+tr
. On the other hand, every periodic point of minimum

period Mtr in XNtr
must be in X3(tr−1) because YNtr

(tr) is a subset of XNtr
. So,

provided we can establish the claim, it follows that the periodic points of minimum
possible period in XNtr

coincide with those in XNtr+tr
. Since {tr}∞r=1 in strictly

increasing, it follows that X4 is period stable. Thus we are left with showing that
p does not contain any of the words βtr+j for j > 0. As noted, p does contain βtr
as a subword. Moreover, |βtr | > |Mtr | (the minimal period of p). By construction,
|βtr+j | > 2j |βtr | and so if p also contained βtr+j as a subword, then βtr+j would
itself contain βtr as a subword. But βtr+j is a word in the language of the subshift
X3(tr + j) and βtr is a forbidden word in X3(tr + j); a contradiction. We conclude
that βtr+j cannot be a subword of p for any j > 0. □

4.3. Construction of such a system with nontrivial automorphism group.
In Section 4.2 we constructed an example of a symbolic system, (X,T ), with the
following properties:

(i) (X,T ) is period stable;
(ii) (X,T ) is not language stable;
(iii) (X,T ) has no periodic points.

Interest in (X,T ) is that by Theorem 1.1 it carries a characteristic measure that is
not seen to exist for other reasons, such as being language stable or having a periodic
point. However, it is not clear what the automorphism group of (X,T ) is, and for
example, if Aut(X) were to be amenable, the existence of a characteristic measure
follows from the Krylov-Bogolyubov Theorem. To address this possibility, we show
how to use (X,T ) to construct a system (Z, T ) that retains properties ((i))–((iii))
of (X,T ) and furthermore has a non-amenable automorphism group. Specifically,
if (X,T ) denotes the system constructed in Section 4.2 (as defined in (16)) and if
(Y, T ) denotes the full shift on two symbols, we show that the subshift Z = X × Y
has the following properties:

(i) (Z, T ) is period stable;
(ii) (Z, T ) is not language stable;
(iii) (Z, T ) has no periodic points;
(iv) Aut(Z) contains the free group on two generators (and so in particular is

not amenable).

4.3.1. (Z,T) has no periodic points. The system (X,T ) has no periodic points by
construction, and since any periodic point in Z projects to a periodic point in X,
there are no periodic points in (Z, T ).
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4.3.2. (Z,T) is not language stable. Let {Xn}∞n=1 denote the SFT cover of X and
{Zn}∞n=1 denote the SFT cover of Z. As the full shift (Y, T ) has no forbidden words,
it follows that Zn = Xn × Y for all n ∈ N. As the system (X,T ) is not language
stable, this then implies that (Z, T ) is not language stable.

4.3.3. (Z,T) is period stable. Let pn denote the smallest period of any periodic
point in the n-th subshift (Xn, T ) in the SFT cover of (X,T ) and let Pn(X) denote
the set of periodic points of period pn in Xn. Since (X,T ) is period stable, given
k ≥ 1 there is some n ∈ N such that Pn(X) = Pn+k(X). Then if x ∈ Pn and y ∈ Y
is a fixed point, the point (x, y) ∈ Z has period pn and so Zn has periodic points of
period pn. Moreover, no periodic point (x′, y′) ∈ Zn can have period lower than pn,
as otherwise x′ ∈ Xn would have a period smaller than pn. Thus pn is the smallest
period of any periodic point in Zn.

If (x, y) ∈ Zn is some periodic point of period pn, then x ∈ Xn and y ∈ Y are
periodic, and the period of each divides pn. Since pn is the least period of any
periodic point in Xn, it follows that x has period pn. Thus the set of periodic
points in Zn with period pn is equal to the set of all points (x, y) with x ∈ Pn(X)
and y ∈ Y having period dividing pn. Similarly, the set of periodic points of period
pn in Zn+k is also the set of all points (x, y) with x ∈ Pn+k(X) = Pn(X) and y ∈ Y
having period dividing pn. (We note that there is no further restriction on the
second coordinate as Y is a full shift.) Thus if follows that (Z, T ) is period stable.

4.3.4. Aut(Z) contains the free group on two generators. We have that Aut(Z)
contains Aut(X)×Aut(Y ) as a subgroup. Since Aut(Y ) is contains the free group
on two generators, it follows that Aut(Z) also does (and so is not amenable).
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